精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.

【答案】分析:(1)已知抛物线解析式和点B的坐标求出a值,利用对称轴x=-求出对称轴以及点A的坐标.
(2)①本题要靠辅助线的帮助.连接AC,AD,过DM⊥y轴于点M.证明△AOC∽△CMD后可推出a,b的值.
②证明四边形BAFE为平行四边形,求出BA,EF得出点F的坐标.
解答:解:(1)对称轴是直线:x=1,
点A的坐标是(3,0);

(2)①如图,连接AC、AD,过D作DM⊥y轴于点M,
解法一:利用△AOC∽△CMD,
在y=ax2-2ax-b(a>0)中,当x=1时,y=-a-b,则D的坐标是(1,-a-b).
∵点A、D、C的坐标分别是A(3,0),D(1,-a-b)、
C(0,-b),
∴AO=3,MD=1.


∴3-ab=0.(3分)
又∵0=a•(-1)2-2a•(-1)-b,(4分)
∴由
,(5分)
∴函数解析式为:y=x2-2x-3.(6分)
解法二:利用以AD为直径的圆经过点C,
∵点A、D的坐标分别是A(3,0)、D(1,-a-b)、C(0,-b),
∴AC=,CD=,AD=
∵AC2+CD2=AD2
∴3-ab=0①(3分)
又∵0=a•(-1)2-2a•(-1)-b②(4分)
由①、②得a=1,b=3(5分)
∴函数解析式为:y=x2-2x-3.(6分)

②F点存在.

如图所示,当四边形BAFE为平行四边形时
则BA∥EF,并且BA=EF.
∵BA=4,
∴EF=4
由于对称轴为x=1,
∴点F的横坐标为5.(7分)
将x=5代入y=x2-2x-3得y=12,∴F(5,12).(8分)
根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点F,
使得四边形BAEF是平行四边形,此时点F坐标为(-3,12).(9分)
当四边形BEAF是平行四边形时,点F即为点D,
此时点F的坐标为(1,-4).(10分)
综上所述,点F的坐标为(5,12),(-3,12)或(1,-4).
点评:本题考查的是二次函数的综合运用以及平行四边形的判定定理,难度中上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案