精英家教网 > 初中数学 > 题目详情
已知二次函数y=(x+m)2+k的顶点为(1,-4)
(1)求二次函数的解析式及图象与x轴交于A、B两点的坐标.
(2)将二次函数的图象沿x轴翻折,得到一个新的抛物线,求新抛物线的解析式.
(1)∵二次函数y=(x+m)2+k的顶点为(1,-4),
∴二次函数解析式为:y=(x-1)2-4,
当y=0,则0=(x-1)2-4,
解得:x1=3,x2=-1,
∴A、B两点的坐标分别为:(-1,0),(3,0);

(2)∵将二次函数的图象沿x轴翻折,得到一个新的抛物线,
∴新的抛物线顶点坐标为:(1,4),a=-1,
∴新抛物线的解析式为:y=-(x-1)2+4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,A(-1,0),B(0,2),一动点P沿过B点且垂直于AB的射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交于点C.
(1)求点C的坐标.
(2)求过点A、B、C三点的抛物线的解析式.
(3)若P点开始运动时,Q点也同时从C点出发,以P点相同的速度沿x轴负方向向点A运动,t秒后,以P、Q、C为顶点的三角形是等腰三角形.(点P到点C时停止运动,点Q也同时停止运动),求t的值.
(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与x轴交于不同的两点A(x1,0)和B(x2,0)与y轴的正半轴交于点C,如果x1、x2是方程x2-x-6=0的两个根(x1<x2)且△ABC的面积为
15
2

(1)求此抛物线解析式;
(2)求直线AC的解析式;
(3)求直线BC的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )
A.2009B.2012C.2011D.2010

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-x2+(m-2)x+m+1.
(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点.
(2)当m为何值时,这两个交点都在原点的左侧?
(3)当m为何值时,这个二次函数的图象的对称轴是y轴?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)用配方法把二次函数y=x2-4x+3化为顶点式,并在直角坐标系中画出它的大致图象(要求所画图象的顶点、与坐标轴的交点位置正确).
(2)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1,y2的大小关系.(直接写结果)
(3)把方程x2-4x+3=2的根在函数y=x2-4x+3的图象上表示出来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的二次函数y=x2-mx+
m2+1
2
y=x2-mx-
m2+2
2
,这两个二次函数图象中只有一个图象与x轴交于A,B两个不同的点.
(l)试判断哪个二次函数的图象经过A,B两点;
(2)若A点坐标为(-1,0),试求该二次函数的对称轴.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

画图求方程x2=-x+2的解,你是如何解决的呢?我们来看一看下面两位同学不同的方法.
甲:先将方程x2=-x+2化为x2+x-2=0,再画出y=x2+x-2的图象,观察它与x轴的交点,得出方程的解;
乙:分别画出函数y=x2和y=-x+2的图象,观察它们的交点,并把交点的横坐标作为方程的解.
你对这两种解法有什么看法?请与你的同学交流.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

关于x的二次函数y=ax2+bx+c(a≠0),其顶点坐标是(2,-1),与x轴的一个交点坐标是(-1,0),则与x轴的另外一个交点坐标是______.

查看答案和解析>>

同步练习册答案