精英家教网 > 初中数学 > 题目详情
如图,有两个可以自由转动的均匀转盘,转盘A被分成面积相等的三个扇形,转盘B被分成面积相等的四个扇形,每个扇形内都涂有颜色.同时转动两个转盘,停止转动后,若一个转盘的指针指向红色,另一个转盘的指针指向蓝色,则配成紫色;若其中一个指针指向分界线时,需重新转动两个转盘.
(1)用列表或画树状图的方法,求同时转动一次转盘A、B配成紫色的概率;
(2)小强和小丽要用这两个转盘做游戏,他们想出如下两种游戏规则:
①转动两个转盘,停止后配成紫色,小强获胜;否则小丽获胜;
②转动两个转盘,停止后指针都指向红色,小强获胜;指针都指向蓝色,小丽获胜.
判断以上两种规则的公平性,并说明理由.

【答案】分析:本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
解答:解:(1)用列表表示所有可能出现的结果:
 A
B
红 红 蓝 蓝 
 红 (红,红)(红,红) (红,蓝) (红,蓝) 
 黄 (黄,红) (黄,红) (黄,蓝)(黄,蓝) 
 蓝 (蓝,红) (蓝,红) (蓝,蓝) (蓝,蓝)
由列表可知,转盘A、B同时转动一次出现12种等可能的情况,其中有4种可配成紫色.
∴P(配成紫色)==

(2)由(1)可知,P(配不成紫色)==≠P(配成紫色)
∴规则①不公平
∵P(都指向红色)==
P(都指向蓝色)==
∴规则②是公平的.
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么精英家教网重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.
(1)请你用列表或树形图求出小明胜和小飞胜的概率;
(2)游戏公平吗?若不公平,请你设计一个公平的规则.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有两个可以自由转动的均匀转盘A、B,转盘A上一条直径与一条半径垂直,转盘B被分成相等的3份,并在每份内均标有数字.王洁和刘刚同学用这两个转盘做游戏,游戏规则如下:
精英家教网
①分别转动转盘A与B;
②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);
③如果和为0,则王洁获胜;否则刘刚获胜.
(1)用列表法(或树状图)求王洁获胜的概率;
(2)你认为这个游戏对双方公平吗?如果你认为不公平,请适当改动规则使游戏对双方公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有两个可以自由转动的均匀转盘A,B,都被分成3等份,每份内均标有数字,小明和小亮用这两个转盘做游戏,游戏规则如下:分别转动转盘A和B,两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止),若和为偶数,则小明获胜;如果和为奇数,那么小亮获胜.
(1)请画出树状图,求小明获胜的概率P(A)和小亮获胜的概率P(B).
(2)通过(1)的计算结果说明该游戏的公平性.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份;转盘B被均匀地分成6等份.有人为甲、乙两人设计了一个游戏,其规则如下:
(1)同时自由转动转盘A与B;
(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).
你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有两个可以自由转动的均匀转盘A、B,转盘A被分为3等份,分别标有1、2、3三个数字;转盘B被分为4等份,分别标有3、4、5、6四个数字;有人为甲、乙两人设计了一个游戏规则:自由转动转盘A和B,转盘停止后,指针各指向一个数字(若指针恰好停在分界线上时,当作指向右边的数字),将指针所指的两个数字相加,如果和为6,那么甲获胜,否则乙获胜.
请你用概率的有关知识进行说明,这个游戏规则是否公平?如果不公平,那么谁获胜的可能性大些?

查看答案和解析>>

同步练习册答案