7£®ÎÒÊÐÀ×À×·þÊÎÓÐÏÞ¹«Ë¾Éú²úÁËÒ»¿îÏļ¾·þ×°£¬Í¨¹ýʵÌåÉ̵êºÍÍøÉÏÉ̵êÁ½ÖÖ;¾¶½øÐÐÏúÊÛ£¬ÏúÊÛÒ»¶Îʱ¼äºó£¬¸Ã¹«Ë¾¶ÔÕâÖÖÉÌÆ·µÄÏúÊÛÇé¿ö£¬½øÐÐÁËΪÆÚ30ÌìµÄ¸ú×Ùµ÷²é£¬ÆäÖÐʵÌåÉ̵êµÄÈÕÏúÊÛÁ¿y1£¨°Ù¼þ£©Óëʱ¼ät£¨tΪÕûÊý£¬µ¥Î»£ºÌ죩µÄ²¿·Ö¶ÔÓ¦ÖµÈç±íËùʾ£¬ÍøÉÏÉ̵êµÄÈÕÏúÊÛÁ¿y2£¨°Ù¼þ£©Óëʱ¼ät£¨tΪÕûÊý£¬µ¥Î»£ºÌ죩µÄ²¿·Ö¶ÔÓ¦ÖµÈçͼËùʾ£®
ʱ¼ät£¨Ì죩051015202530
ÈÕÏúÊÛÁ¿
y1£¨°Ù¼þ£©
025404540250
£¨1£©ÇëÄãÔÚÒ»´Îº¯Êý¡¢¶þ´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýÖУ¬Ñ¡ÔñºÏÊʵĺ¯ÊýÄÜ·´Ó³y1ÓëtµÄ±ä»¯¹æÂÉ£¬²¢Çó³öy1ÓëtµÄº¯Êý¹Øϵʽ¼°×Ô±äÁ¿tµÄÈ¡Öµ·¶Î§£»
£¨2£©Çóy2ÓëtµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ö×Ô±äÁ¿tµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ¸ú×Ùµ÷²éµÄ30ÌìÖУ¬ÉèʵÌåÉ̵êºÍÍøÉÏÉ̵êµÄÈÕÏúÊÛ×ÜÁ¿Îªy£¨°Ù¼þ£©£¬ÇóyÓëtµÄº¯Êý¹Øϵʽ£»µ±tΪºÎֵʱ£¬ÈÕÏúÊÛ×ÜÁ¿y´ïµ½×î´ó£¬²¢Çó³ö´ËʱµÄ×î´óÖµ£®

·ÖÎö £¨1£©¸ù¾Ý¹Û²ì¿ÉÉèy1=at2+bt+c£¬½«£¨0£¬0£©£¬£¨5£¬25£©£¬£¨10£¬40£©´úÈë¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©µ±0¡Üt¡Ü10ʱ£¬Éèy2=kt£¬ÇóµÃy2ÓëtµÄº¯Êý¹ØϵʽΪ£ºy2=4t£¬µ±10¡Üt¡Ü30ʱ£¬Éèy2=mt+n£¬½«£¨10£¬40£©£¬£¨30£¬60£©´úÈëµÃµ½y2ÓëtµÄº¯Êý¹ØϵʽΪ£ºy2=k+30£¬
£¨3£©ÒÀÌâÒâµÃy=y1+y2£¬µ±0¡Üt¡Ü10ʱ£¬µÃµ½y×î´ó=80£»µ±10£¼t¡Ü30ʱ£¬µÃµ½y×î´ó=91.2£¬ÓÚÊǵõ½½áÂÛ£®

½â´ð ½â£¨1£©¸ù¾Ý¹Û²ì¿ÉÉèy1=at2+bt+c£¬½«£¨0£¬0£©£¬£¨5£¬25£©£¬£¨10£¬40£©´úÈëµÃ£º$\left\{\begin{array}{l}{c=0}\\{25a+5b=25}\\{100a+10b=40}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{5}}\\{b=6}\\{c=0}\end{array}\right.$£¬
¡ày1ÓëtµÄº¯Êý¹ØϵʽΪ£ºy1=-$\frac{1}{5}$t2+6t£¨0¡Üt¡Ü30£¬ÇÒΪÕûÊý£©£»

£¨2£©µ±0¡Üt¡Ü10ʱ£¬Éèy2=kt£¬
¡ß£¨10£¬40£©ÔÚÆäͼÏóÉÏ£¬
¡à10k=40£¬
¡àk=4£¬
¡ày2ÓëtµÄº¯Êý¹ØϵʽΪ£ºy2=4t£¬
µ±10¡Üt¡Ü30ʱ£¬Éèy2=mt+n£¬
½«£¨10£¬40£©£¬£¨30£¬60£©´úÈëµÃ$\left\{\begin{array}{l}{10m+n=40}\\{30m+n=60}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=1}\\{n=30}\end{array}\right.$£¬
¡ày2ÓëtµÄº¯Êý¹ØϵʽΪ£ºy2=k+30£¬
×ÛÉÏËùÊö£¬y2=$\left\{\begin{array}{l}{4t£¨0¡Üt¡Ü10£¬ÇÒΪÕûÊý£©}\\{t+30£¨10£¼t¡Ü30£¬ÇÒΪÕûÊý£©}\end{array}\right.$£»

£¨3£©ÒÀÌâÒâµÃy=y1+y2£¬µ±0¡Üt¡Ü10ʱ£¬y=-$\frac{1}{5}$t2+6t+4t=-$\frac{1}{5}$t2+10t=-$\frac{1}{5}$£¨t-25£©2+125£¬
¡àt=10ʱ£¬y×î´ó=80£»
µ±10£¼t¡Ü30ʱ£¬y=-$\frac{1}{5}$t2+6t+t+30=-$\frac{1}{5}$t2+7t+30=-$\frac{1}{5}$£¨t-$\frac{35}{2}$£©2+$\frac{365}{4}$£¬
¡ßtΪÕûÊý£¬
¡àt=17»ò18ʱ£¬y×î´ó=91.2£¬
¡ß91.2£¾80£¬
¡àµ±t=17»ò18ʱ£¬y×î´ó=91.2£¨°Ù¼þ£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÓ¦Óã¬Ò»´Îº¯ÊýµÄÓ¦Ó㬴ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÕýÈ·µÄÀí½âÌâÒâÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ä³Ð£ÔÚ¡°°®»¤µØÇò¡¢ÂÌ»¯×æ¹ú¡±µÄ´´½¨»î¶¯ÖУ¬×é֯ѧÉú¿ªÕ¹ÁËÖ²Ê÷ÔìÁֻ£¬ÎªÁËÁ˽âȫУѧÉúµÄÖ²Ê÷Çé¿ö£¬Ñ§Ð£Ëæ»ú³é²éÁË100ÃûѧÉúµÄÖ²Ê÷Çé¿ö£¬½«µ÷²éÊý¾ÝÕûÀíÈç±í£º
Ö²Ê÷ÊýÁ¿£¨¿Ã£©456810
ÈËÊý302625158
£¨1£©ÉÏÊöÊý¾ÝÖУ¬ÖÐλÊýÊÇ5£¬ÖÚÊýÊÇ4£®
£¨2£©Èô¸ÃУÓÐ1680ÃûѧÉú£¬Çë¸ù¾ÝÒÔÉϵ÷²é½á¹û¹À¼Æ¸ÃУѧÉúµÄÖ²Ê÷×ÜÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®6ÔÂ5ÈÕÊÇÊÀ½ç»·¾³ÈÕ£¬2017ÄêÊÀ½ç»·¾³ÈÕÖйúµÄÖ÷ÌâÊÇ¡°ÂÌË®Çàɽ¾ÍÊǽðɽÒøɽ¡±£¬Ð¡Ã÷»ý¼«Ñ§Ï°ÓëÐû´«£¬²¢´ÓËĸö·½Ã棨A-¿ÕÆøÎÛȾ£¬B-µ­Ë®×ÊԴΣ»ú£¬C-ÍÁµØ»ÄÄ®»¯£¬D-È«Çò±äů£©¶ÔȫУͬѧ½øÐÐÁËËæ»ú³éÑùµ÷²é£¬Á˽âËûÃÇÔÚÕâËĸö·½ÃæÖÐ×î¹Ø×¢µÄÎÊÌ⣨ÿÈËÏÞÑ¡Ò»Ï£¬²¢»æÖÆÁËÈçϲ»ÍêÕûµÄͳ¼Æͼ±í£º
¹Ø×¢µÄÎÊÌâƵÊýƵÂÊ
A32m
Ba0.2
C80.1
D24n
ºÏ¼Æb1
Çë½áºÏͼ±íÍê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©±íÖеÄb=80£¬n=0.3£»
£¨2£©½«ÌõÐÎͳ¼Æͼ²¹³äÍêÕû£»
£¨3£©ÈôСÃ÷ËùÔÚµÄѧУÓÐ1100ÃûѧÉú£¬ÄÇô¸ù¾ÝСÃ÷ÌṩµÄÐÅÏ¢¹À¼Æ¸ÃУ¹Ø×¢¡°¿ÕÆøÎÛȾ¡±µÄѧÉú´óÔ¼ÓжàÉÙÈË£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½â·½³Ì×é
£¨1£©$\left\{\begin{array}{l}x+y=1\\ 2x-y=-4\end{array}\right.$
£¨2£©$\left\{{\begin{array}{l}{\frac{1}{3}x+\frac{2}{3}£¨y-1£©=2}\\{2£¨x-1£©=y-1}\end{array}}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®½âÏÂÁв»µÈʽ×飬²¢°ÑËüÃǵĽ⼯±íʾÔÚÊýÖáÉÏ£®
£¨1£©$\left\{\begin{array}{l}-3x-1£¼5\\ 2x+1£¾3\end{array}\right.$
£¨2£©$\left\{{\begin{array}{l}{\frac{1}{2}£¨x+4£©¡Ü3}\\{\frac{x+2}{2}£¾\frac{x+3}{3}}\end{array}}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®½âÕâ¸ö²»µÈʽ×飬²¢½«½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£º
$\left\{\begin{array}{l}{2x-2£¼3x¢Ù}\\{\frac{x+2}{5}-\frac{x+1}{4}¡Ý0¢Ú}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈçͼËùʾµÄÒ»¿éµØ£¬ÒÑÖª¡ÏADC=90¡ã£¬AD=12m£¬CD=9m£¬AB=25m£¬BC=20m£¬ÔòÕâ¿éµØµÄÃæ»ýΪ£¨¡¡¡¡£©Æ½·½Ã×£®
A£®96B£®204C£®196D£®304

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{ax+by=7}\\{bx-ay=5}\end{array}\right.$µÄ½âÊÇ$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$£¬Çó4a-3bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª¶þ´Îº¯Êýy=a£¨x+1£©2-b£¨a¡Ù0£©ÓÐ×îСֵ1£¬Ôò$\sqrt{{a}^{2}}$-|a-3b|=3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸