【题目】如图,在平面直角坐标系中,点、、的坐标分别为、、,先将沿一确定方向平移得到,点的对应点的坐标是,再将绕原点顺时针旋转得到,点的对应点为点.
(1)画出和;
(2)求出在这两次变换过程中,点经过点到达的路径总长;
(3)求线段旋转到所扫过的图形的面积.
【答案】(1)见解析; ;(3)2π
【解析】试题分析:(1)由B点坐标和B1的坐标得到△ABC向右平移5个单位,再向上平移1个单位得到△A1B1C1,则根据点平移的规律写出A1和C1的坐标,然后描点即可得到△A1B1C1;利用网格特点和旋转的性质画出点A1的对应点为点A2,点B1的对应点为点B2,点C1的对应点为点C2,从而得到△A2B2C2;
(2)先利用勾股定理计算平移的距离,再计算以OA1为半径,圆心角为90°的弧长,然后把它们相加即可得到这两次变换过程中,点A经过点A1到达A2的路径总长;
(3)用扇形C1C2的面积-扇形B1B2的面积即可得.
试题解析:(1)如图
(2),
点A经过点A1到达A2的路径总长为
(3)
科目:初中数学 来源: 题型:
【题目】若二次函数的图像记为,其顶点为,二次函数的图像记为,其顶点为,且满足点在上,点在上,则称这两个二次函数互为“伴侣二次函数”.
(1)写出二次函数的一个“伴侣二次函数”;
(2)设二次函数与轴的交点为,求以点为顶点的二次函数的“伴侣二次函数”;
(3)若二次函数与其“伴侣二次函数”的顶点不重合,试求该“伴侣二次函数”的二次项系数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,sinA=,BC=8,点D是AB的中点,过点B作CD的垂线,垂足为点E.
(1)求线段CD的长;
(2)求cos∠ABE的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com