精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:E∠AOB的平分线上一点,EC⊥OBED⊥OACD是垂足,连接CD,且交OE于点F.

(1)求证:OECD的垂直平分线.

(2)∠AOB=60°,请你探究OEEF之间有什么数量关系?并证明你的结论.

【答案】(1)证明见解析;(2) OE=4EF.

【解析】试题分析:(1)先证△ODE≌△OCE,得出△DOC是等腰三角形,再根据等腰三角形三线合一得出OECD的垂直平分线;(2)分别求出∠AOE=30°,∠EDF=30°,根据直角三角形中,30°所对的直角边等于斜边的一半求解.

(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,

∴DE=CE,∵OE=OE,

∴Rt△ODE≌Rt△OCE,

∴OD=OC,

∴△DOC是等腰三角形,

又∵OE是∠AOB的平分线,

∴OE是CD的垂直平分线;

(2)∵OE是∠AOB的平分线,∠AOB=60°,

∴∠AOE=∠BOE=30°,

∵ED⊥OA,CD⊥OE,

∴OE=2DE,∠ODF=∠OED=60°,

∴∠EDF=30°,

∴DE=2EF,

∴OE=4EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知不等式组 的整数解为1、2、3,如果把适合这个不等式组的整数a、b组成有序数对(a,b),那么对应在平面直角坐标系上的点共有的个数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1∥l2 , 点A是l1上的动点,点B在l1上,点C、D在l2上,∠ABC,∠ADC的平分线交于点E(不与点B,D重合).
(1)若点A在点B的左侧,∠ABC=80°,∠ADC=60°,过点E作EF∥l1 , 如图①所示,求∠BED的度数.

(2)若点A在点B的左侧,∠ABC=α°,∠ADC=60°,如图②所示,求∠BED的度数;(直接写出计算的结果)

(3)若点A在点B的右侧,∠ABC=α°,∠ADC=60°,如图③所示,求∠BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(3x2y2=  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘AB,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.

1)用画树状图或列表法求乙获胜的概率;

2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:16a2﹣(a2+4)2=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式x2+3x=3,可求得另一个多项式3x2+9x-4的值为(  )
A.3
B.4
C.4
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南京属于北亚热带湿润气候,年平均降水量约为1100毫米,将数据1100用科学记数法表示为______

查看答案和解析>>

同步练习册答案