如图,AB是⊙O 的直径,CD是⊙O的一条弦,且CD⊥AB于点E.
(1)求证:∠BCO=∠D;
(2)若CD=,AE=2,求⊙O的半径.
(1)证明:∵OC=OB,
∴∠BCO=∠B.
∵∠B=∠D,
∴∠BCO=∠D.
(2)【解析】
∵AB是⊙O 的直径,且CD⊥AB于点E,
∴CE=CD=.
在Rt△OCE中,,
设⊙O的半径为r,则OC=r,OE=OAAE=r2,
∴.
解得.
∴⊙O 的半径为3.
【解析】
试题分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一
对角相等,等量代换即可得证;
(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形
OCE中,设圆的半径OC=r,OE=OA-AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的
解即可得到圆的半径r的值.
考点:垂径定理,勾股定理,圆周角定理
科目:初中数学 来源:2014-2015学年北京市平谷区九年级上学期期末考试数学试卷(解析版) 题型:解答题
如图,BC为⊙O的直径,以BC为直角边作Rt△ABC,∠ACB=90°,斜边AB与⊙O交于点D,过点D作⊙O的切线DE交AC于点E,DG⊥BC于点F,交⊙O于点G.
(1)求证:AE=CE;
(2)若AD=4,AE=,求DG的长.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市平谷区九年级上学期期末考试数学试卷(解析版) 题型:选择题
在Rt△ABC中,∠C=90°,AC=4,BC=3,则是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市九年级上学期期中检测数学试卷(解析版) 题型:解答题
已知:△OBC内接于圆,圆与直角坐标系的x、y轴交于B、A两点,若∠BOC=45°,∠OBC=75°,A点坐标为(0,).
求:⑴B点的坐标;
⑵BC的长.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市九年级上学期期中检测数学试卷(解析版) 题型:选择题
如图,四边形 ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为( )
A.50° B.80° C.100° D.130°
查看答案和解析>>
科目:初中数学 来源:2014-2015学年安徽省淮北市五校九年级上学期第三次联考数学试卷(解析版) 题型:选择题
如图,已知正△ABC的边长为1,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com