精英家教网 > 初中数学 > 题目详情
如图所示,OACB是矩形,C(a,b),点D为BC中点,反比例函数y=
4
x
的图象经过点D且交AC于点E.
(1)求证:△AOE与△BOD的面积相等;
(2)求证:点E是AC的中点;
(3)当OE⊥DE时,试求OB2-OA2的值.
(1)证明:∵E,D点都在反比例函数图象上,
∴E,D横纵坐标乘积相等,
∵△AOE为
1
2
×AO×AE=
1
2
xy=2,△BOD的面积为:
1
2
×BO×DB=
1
2
xy=2,
∴△AOE与△BOD的面积相等;

(2)证明:∵点D为BC中点,△AOE与△BOD的面积相等,即
1
2
×AO×AE=
1
2
×BO×DB,
1
2
×2BD×AE=
1
2
×BO×DB,
∴2AE=BO,
∴点E是AC的中点;

(3)∵OE⊥DE,
∴∠CED+∠AEO=90°,
又∵∠AOE+∠AEO=90°,
∴∠AEO=∠CDE,
∵∠OAE=∠C,
∴△AOE△CED,
AO
EC
=
AE
CD

∵AE=EC,CD=BD
∴AE2=AO×CD=AO×
1
2
AO=
1
2
AO2
∴(
BO
2
2=
1
2
AO2
即BO2=2AO2,则BO=
2
AO,
∴BO×BD=
2
AO×
1
2
AO=
2
2
AO2=k=4,
∴OB2-OA2=AO2=4÷
2
2
=4
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是汽车在某高速公路上匀速行驶时,速度v(千米/时)与行驶时间t(小时)的函数图象,请根据图象提供的信息回答问题:汽车最慢用______小时可以到达.如果要在4小时内到达,汽车的速度应不低于______千米/时.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=
k1
x
的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=
k2
x
(x>0)的图象交于点D(n,-2).
(1)求k1和k2的值;
(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△ACE?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(-2,3)在反比例函数的图象上,且图象经过点(1,2m+1).
(1)求反比例函数的解析式;
(2)求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=
k
x
(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知梯形ABCO的底边AO在x轴上,BCAO,AB⊥AO,过点C的双曲线y=
k
x
交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
6
x
(x>0)的图象上有A、B两点,过A作AD⊥x轴于D,过B作BC⊥x轴于C点,若AD=3BC,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角梯形OABC中,ABOC,过B点的双曲线y=
k
x
(k>0)恰好过BC的中点D,且S梯形ABCO=6,则k=______.

查看答案和解析>>

同步练习册答案