精英家教网 > 初中数学 > 题目详情
如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
(1)∵点B(-2,m)在直线y=-2x-1上
∴m=-2×(-2)-1=3
∴B(-2,3)
∵抛物线经过原点O和点A,对称轴为x=2
∴点A的坐标为(4,0)
设所求的抛物线对应函数关系式为y=a(x-0)(x-4)
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4)
∴a=
1
4

∴所求的抛物线对应的函数关系式为y=
1
4
x(x-4)
即y=
1
4
x2-x;

(2)证明:①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1)E(2,-5),
过点B作BGx轴,与y轴交于F、直线x=2交于G,
则BG⊥直线x=2,BG=4
在Rt△BGC中,BC=
CG2+BG2
=5

∵CE=5,
∴CB=CE=5
②过点E作EHx轴,交y轴于H,

则点H的坐标为H(0,-5)
又点F、D的坐标为F(0,3)、D(0,-1)
∴FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°
∴△DFB≌△DHE(SAS)
∴BD=DE
即D是BE的中点;

(3)存在.
由于PB=PE,∴点P在直线CD上
∴符合条件的点P是直线CD与该抛物线的交点
设直线CD对应的函数关系式为y=kx+b
将D(0,-1)C(2,0)代入,得
b=-1
2k+b=0

解得k=
1
2
,b=-1
∴直线CD对应的函数关系式为y=
1
2
x-1
∵动点P的坐标为(x,
1
4
x2-x)
1
2
x-1=
1
4
x2-x
解得x1=3+
5
,x2=3-
5

∴y1=
1+
5
2
,y2=
1-
5
2

∴符合条件的点P的坐标为(3+
5
1+
5
2
)或(3-
5
1-
5
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax2+bx+c中,若a:b:c=1:4:3,且该函数的最小值是-3,则解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10)x+c.
(1)若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;
(2)过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是(  )
A.有最小值-5、最大值0B.有最小值-3、最大值6
C.有最小值0、最大值6D.有最小值2、最大值6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=
1
2
x2-
5
2
x与x轴交于O,A两点.半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动.设点P的横坐标为t.
(1)点Q的横坐标是______(用含t的代数式表示);
(2)若⊙P与⊙Q相离,则t的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用一段长为30m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长18m,这个矩形的长、宽各为多少时,养鸡场的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案