精英家教网 > 初中数学 > 题目详情
如图,一次函数y=ax+b的图象与反比例函数y=
kx
(k≠0)
的图象交于M、N两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
分析:(1)将N坐标代入反比例函数解析式求出k的值,确定出反比例解析式,将M坐标代入反比例解析式求出m的值,确定出M坐标,将M与N坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;
(2)由M与N横坐标,以及0,将x轴分为四个范围,找出一次函数图象位于反比例图象上方时x的范围即可.
解答:解:(1)将N(-1,-4)代入反比例解析式得:k=4,即反比例解析式为y=
4
x

将M(2,m)代入反比例解析式得:m=2,即M(2,2),
将M与N坐标代入一次函数解析式得:
-a+b=-4
2a+b=2

解得:
a=2
b=-2

∴一次函数解析式为y=2x-2;

(2)根据图象得:一次函数的值大于反比例函数的值的x的取值范围为-1<x<0或x>2.
点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案