精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD=
5
cm
,CD=5cm,BC=4cm,求四边形ABCD的面积.
分析:连接BD,根据勾股定理求得BD的长,再根据勾股定理的逆定理证明△BCD是直角三角形,则四边形ABCD的面积是两个直角三角形的面积和.
解答:解:连接BD.
∵∠A=90°,AB=2cm,AD=
5
cm

∴BD=
22+(
5
)
2
=3,
又∵CD=5,BC=4,
∴CD2=BC2+BD2
∴△BCD是直角三角形,
∴∠CBD=90°,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
BC•BD=
1
2
×2×
5
+
1
2
×4×3=
5
+6.
点评:此题考查勾股定理和勾股定理的逆定理的应用,辅助线的作法是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在四边形ABCD中,AD=AB,CD=CB,则∠D=∠B,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在四边形ABCD中,∠C=90°,AB=AD=10,cos∠ABD=
25
,∠BDC=60°.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在四边形ABCD中,AC与BD相交于点O,AB⊥AC,CD⊥BD.
(1)求证:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区一模)如图,已知在四边形ABCD中,AC⊥AB,BD⊥CD,AC与BD相交于点E,S△AED=9,S△BEC=25.
(1)求证:∠DAC=∠CBD;
(2)求cos∠AEB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在四边形ABCD中,∠ABC=2∠ADC=2a,点E、F分别在CB、CD的延长线上,且EB=AB+AD,∠AEB=∠FAD,猜想线段AE、AF的数量关系,并证明你的猜想.

查看答案和解析>>

同步练习册答案