ÒÑÖªÅ×ÎïÏßy=x2+(2n-1)x+n2-1 (nΪ³£Êý).

(1)µ±¸ÃÅ×ÎïÏß¾­¹ý×ø±êÔ­µã£¬²¢ÇÒ¶¥µãÔÚµÚËÄÏóÏÞʱ£¬Çó³öËüËù¶ÔÓ¦µÄº¯Êý¹Øϵʽ£»

(2)ÉèAÊÇ(1)ËùÈ·¶¨µÄÅ×ÎïÏßÉÏλÓÚxÖáÏ·½¡¢ÇÒÔÚ¶Ô³ÆÖá×ó²àµÄÒ»¸ö¶¯µã£¬¹ýA×÷xÖáµÄƽÐÐÏߣ¬½»Å×ÎïÏßÓÚÁíÒ»µãD£¬ÔÙ×÷AB¡ÍxÖáÓÚB£¬DC¡ÍxÖáÓÚC.

¡¡¡¡¢Ùµ±BC=1ʱ£¬Çó¾ØÐÎABCDµÄÖܳ¤£»

¢ÚÊÔÎʾØÐÎABCDµÄÖܳ¤ÊÇ·ñ´æÔÚ×î´óÖµ£¿Èç¹û´æÔÚ£¬ÇëÇó³öÕâ¸ö×î´óÖµ£¬²¢Ö¸³ö´ËʱAµãµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy=x2-8x+cµÄ¶¥µãÔÚxÖáÉÏ£¬ÔòcµÈÓÚ£¨¡¡¡¡£©
A¡¢4B¡¢8C¡¢-4D¡¢16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy=x2+£¨1-2a£©x+a2£¨a¡Ù0£©ÓëxÖá½»ÓÚÁ½µãA£¨x1£¬0£©¡¢B£¨x2£¬0£©£¨x1¡Ùx2£©£®
£¨1£©ÇóaµÄÈ¡Öµ·¶Î§£¬²¢Ö¤Ã÷A¡¢BÁ½µã¶¼ÔÚÔ­µãOµÄ×ó²à£»
£¨2£©ÈôÅ×ÎïÏßÓëyÖá½»ÓÚµãC£¬ÇÒOA+OB=OC-2£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-x2+bx+cÓëxÖḺ°ëÖá½»ÓÚµãA£¬ÓëyÖáÕý°ëÖá½»ÓÚµãB£¬ÇÒOA=OB£®
¾«Ó¢¼Ò½ÌÍø£¨1£©Çób+cµÄÖµ£»
£¨2£©ÈôµãCÔÚÅ×ÎïÏßÉÏ£¬ÇÒËıßÐÎOABCÊÇƽÐÐËıßÐΣ¬ÊÔÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬×÷¡ÏOBCµÄ½Çƽ·ÖÏߣ¬ÓëÅ×ÎïÏß½»ÓÚµãP£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºç¿ÚÇøһģ£©Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÅ×ÎïÏßy=x2+bx+c¾­¹ýA£¨0£¬3£©£¬B£¨1£¬0£©Á½µã£¬¶¥µãΪM£®
£¨1£©Çób¡¢cµÄÖµ£»
£¨2£©½«¡÷OABÈƵãB˳ʱÕëÐýת90¡ãºó£¬µãAÂäµ½µãCµÄλÖ㬸ÃÅ×ÎïÏßÑØyÖáÉÏÏÂƽÒƺ󾭹ýµãC£¬ÇóƽÒƺóËùµÃÅ×ÎïÏߵıí´ïʽ£»
£¨3£©É裨2£©ÖÐƽÒƺóËùµÃµÄÅ×ÎïÏßÓëyÖáµÄ½»µãΪA1£¬¶¥µãΪM1£¬ÈôµãPÔÚƽÒƺóµÄÅ×ÎïÏßÉÏ£¬ÇÒÂú×ã¡÷PMM1µÄÃæ»ýÊÇ¡÷PAA1Ãæ»ýµÄ3±¶£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ç­ÄÏÖÝ£©ÒÑÖªÅ×ÎïÏßy=x2-x-1ÓëxÖáµÄ½»µãΪ£¨m£¬0£©£¬Ôò´úÊýʽm2-m+2011µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸