精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,抛物线与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,4),顶点为(1,5).
(1)求该抛物线的函数关系式;
(2)连接AC、BC,求△ABC的面积.
(1)设抛物线的解析式为y=a(x-1)2+5,由题意,得
4=a+5,
∴a=-1,
∴抛物线的解析式为:y=-(x-1)2+5,
(2)连接AC、BC,如图.
∵抛物线的解析式为:y=-(x-1)2+5,
∴y=0时,则0=-(x-1)2+5,
∴x1=
5
+1,x2=-
5
+1,
∴A(-
5
+1,0),B(
5
+1,0),
∴AB=2
5

∴S△ABC=
2
5
×4
2
=4
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
1
2
x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,-4).
(1)求抛物线的解析式;
(2)点Q是线段OB上的动点,过点Q作QEBC,交AC于点E,连接CQ,设OQ=m,当△CQE的面积最大时,求m的值,并写出点Q的坐标;
(3)若平行于x轴的动直线,与该抛物线交于点P,与直线BC交于点F,D的坐标为(-2,0),则是否存在这样的直线l,使OD=DF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.
(2)求支柱MN的长度.
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道叫做磁道.如图,现有一张半径为45mm,有
10
3
(45-r)条磁道的磁盘,这张磁盘最内磁道的半径为rmm.
(1)磁盘最内磁道上每0.015mm的弧长为1个存储单元,用r的代数式表示这条磁道有多少个存储单元?
(2)如果各磁道的存储单元数目与最内磁道相同,且磁盘的存储量是225000π个存储单元,求最内磁道的半径r是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,经调查这种商品每降低1元,其销量可增加10件.
①求商场原来一天可获利润多少元?
②设后来该商品每件降价x元,一天可获利润y元.
1)若经营该商品一天要获利2160元,则每件商品应降价多少元?
2)当售价为多少时,获利最大并求最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B,若点C在抛物线的对称轴上,点D在抛物线上,且以O,C,D,B四点为顶点的四边形为平行四边形,则D点的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某果品公司为指导今年的樱桃销售,对往年的市场销售情况进行调查统计,得到如下数据:
销售价x(元/kg)25242322
销售量y(kg)2000250030003500
(1)在如图坐标系中作出各组有序数对(x,y)所对应点,连接并观察所得图象,判定y与x之间函数关系式,并求出y与x关系式.
(2)若樱桃进价为12元/kg,求销售利润P(元)与销售价x(元/kg)之间函数关系式,并求售价多少元时,利润最大?

查看答案和解析>>

同步练习册答案