【题目】已知关于的一元二次方程
.
(1)求证:无论为任何实数,此方程总有两个实数根;
(2)若方程的两个实数根为、
,满足
,求
的值;
(3)若△
的斜边为5,另外两条边的长恰好是方程的两个根
、
,求
的内切圆半径.
【答案】(1)详见解析;(2)2;(3)1
【解析】
(1)将二次项系数,一次项系数,常数项分别代入根的判别式△中,并进行整理,可得,恒大于等于0,故此一元二次方程无论
为任何实数时,此方程总有两个实数根
(2)根据根与系数的关系可知,
,将
进行分式的加法,再将
,
代入即可求得k.
(3)解一元二次方程可得,
,由题意
△
的斜边为5,通过勾股定理可求得,k=4,根据直角三角形中的内切圆半径为r=(a+b-c)/2 (a,b为直角边,c为斜边),代入即可求得半径.
(1)证明:∵,
无论
为任何实数时,此方程总有两个实数根.
(2)由题意得:,
,
即,
解得:;
(3)解:
解方程得:,
根据题意得:,即
设直角三角形的内切圆半径为
,如图,
由切线长定理可得:,
直角三角形
的内切圆半径
=
;
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由;
(2)若AC=6,CD=5,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AB=AD,CB=CD,∠ABC=∠ADC=90°,∠BAD=α,∠BCD=β,点E,F是四边形ABCD内的两个点,满足∠EAF=,∠ECF=
,连接BE,EF,FD.
(1)如图1,当α=β时,判断∠ABE和∠ADF之间的数量关系,并证明你的猜想;
(2)当α≠β时,用等式表示线段BE,EF,FD之间的数量关系(直接写出即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学现有的五个社团:.文学,
.辩论,
.体育,
.奥数,
.围棋,为了选出“你最喜爱的社团”,在部分同学中开展了调查( 每名被调查的同学必须且只能选出一个社团),并将调查结果进行了统计,绘制了如下两幅不完整的统计图:
求本次被调查的人数;
将上面两幅统计图补充完整;
若该学校大约有学生
人,请你估计喜欢体育社团的人数;
学校为社团安排了
号教室供社团活动使用,文学设社和辩论社使用的教室恰好相邻的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
弹簧总长L(cm) | 16 | 17 | 18 | 19 | 20 |
重物重量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是( )
A.22.5B.25C.27.5D.30
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com