【题目】如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
【答案】(1)BF=AC,理由见解析;(2)NE=AC,理由见解析.
【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.
试题解析:
(1)BF=AC,理由是:
如图1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵,
∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=AC,理由是:
如图2,由折叠得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=AC.
【题型】解答题
【结束】
17
【题目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=
,求n的值.
科目:初中数学 来源: 题型:
【题目】计算
(1)12﹣(﹣18)+(﹣7).
(2)3+(﹣2
)+5
+(﹣8
).
(3)(﹣)×(﹣
)+(﹣
)×(
).
(4)(﹣)×(﹣1
)÷(﹣2
).
(5)42×(﹣)+(﹣
)÷(﹣0.25).
(6)(﹣1)10×3+(﹣2)3÷4﹣145×0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=1,对角线AC、BD相交于点O,过点O作EF⊥AC分别交射线AD与射线CB于点E和点F,联结CE、AF.
(1)求证:四边形AFCE是菱形;
(2)当点E、F分别在边AD和BC上时,如果设AD=x,菱形AFCE的面积是y,求y关于x的函数关系式,并写出x的取值范围;
(3)如果△ODE是等腰三角形,求AD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待70位顾客共同就餐,但餐厅只有18张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
【答案】(1)50;(2)16;(3)56(4)见解析
【解析】试题分析:
(1)根据统计图中的信息可知,获得A等的有10人,占抽查总数的20%,由此即可计算出抽查学生的总数;
(2)由(1)中计算结果结合统计图中已知的A、B、D三个等级的人数即可求得C等级的人数,并由此补全条形统计图;
(3)由(1)中求得的被抽查学生的总数及获得D等级的有4人可计算出获得D等级的人数所占的百分比,即可求得800人中可能获得D等级的人数;
(4)设两名男生为A1、A2,两名女生为B1、B2,画出树形图分析即可求得所求概率;
试题解析:
(1)10÷20%=50(名)
答:本次抽样调查共抽取了50名学生.
(2)50-10-20-4=16(名)
答:测试结果为C等级的学生有16名.
图形统计图补充完整如下图所示:
(3)700×=56(名)
答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
(4)画树状图法:设体能为A等级的两名男生分别为,体能为A等级的两名女生分别为
,
,画树状图如下:
由树状图可知,共有12 种结果,每种结果出现的可能性相同,而抽取的两人都是男生的结果有两种:(),(
,
), ∴P(抽取的两人是男生)=
.
【题型】解答题
【结束】
20
【题目】如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);
(3)在点E从B向O运动的过程中,完成下面问题:
①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
②当DE经过点O时,请你直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了传承优秀传统文化,某校组织800名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:
90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,83,100,73,76,80,77,81,86,75,82,85,71,68,74,98,90,97,85,84,78,73,65,92,96,60
对上述成绩进行了整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
60≤x<70 | 6 | 0.15 |
70≤x<80 | a | b |
80≤x<90 | 14 | 0.35 |
90≤x≤100 | c | d |
请根据所给信息,解答下列问题:
(1)a= ,d= .
(2)请补全频数分布直方图
(3)若成绩在90分以上(包括90分)的为“优等,请你估计参加这次比赛的800名学生中成绩“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图正比例函数y=2x的图像与一次函数 的图像交于点A(m,2),一次函数的图象经过点B(-2,-1)与y轴交点为C与x轴交点为D.
(1)求一次函数的解析式;
(2)求的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<
时,y随x的增大而减小;⑥a+b+c>0中,其中正确的有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com