【题目】在⊙O中,AB为直径,C为⊙O上一点.
(1)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=28°,求∠P的大小;
(2)如图②,D为弧AB上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中有三点、、,请回答如下问题:
(1)在坐标系内描出点的位置:
(2)求出以三点为顶点的三角形的面积;
(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张叔叔购买了甲,乙两种苹果树苗,分别花了 3500 元和 2500 元.已知甲树苗单价比乙树苗单价贵 2 元.
(1)若两种树苗购买的棵数一样多,求乙树苗的单价;
(2)若第二次购买两种树苗共 1100 棵,且购买两种树苗的总费用不超过 6000 元,根据(1)中两种树苗的单价,求第二次至少购买了多少棵乙树苗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品交易会上,一商人将每件进价为 5 元的纪念品,按每件 9 元出售,每天可售出 32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价 2 元,每天的销售量会减少 8 件.
(1)当售价定为多少元时,每天的利润为 140 元?
(2)写出每天所得的利润 y(元)与售价 (元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价-进价)×售出件数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B在反比例函数(x>0)的图象上,点C,D在反比例函数(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A. 3 B. 4 C. 2 D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com