精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中有矩形OABC,O是坐标系的原点,A在x轴上,C在y轴上,OA=6,OC=2.
(1)分别写出A、B、C三点的坐标;
(2)已知直线l经过点P(0,-
12
)并把矩形OABC的面积平均分为两部分,求直线l的函数表达式;
(3)设(2)的直线l与矩形的边OA、BC分别相交于M和N,以线段MN为折痕把四边形MABN翻折(如图2),使A、B两点分别落在坐标平面的A'、B'位置上.求点A'的坐标及过A'、B、C三点的抛物线的函数表达式.
精英家教网
分析:(1)由于在平面直角坐标系中有矩形OABC,O是坐标系的原点,A在x轴上,C在y轴上,OA=6,OC=2,由此即可求出A、B、C三点的坐标;
(2)根据题意知道l必过矩形OABC的对角线的交点,而根据已知条件可以确定对角线的交点坐标,直线又经过P,利用待定系数法即可确定直线的解析式;
(3)由于FM是直线y=
1
2
x-
1
2
与x轴的交点,利用直线解析式即可求出M的坐标,然后可以求出OM=1,AM=5,然后由矩形的中心对称性得CN=AM=5,BN=OM=1,过N作NE⊥x轴于E,则AE=BN=1,ME=AM-AE=5-1=4,又NE=2,根据勾股定理可以求出MN,连接AA'交l于F,由轴对称性质得AF⊥l(如图2),即AF⊥MN,AA'=2AF,又连接AN,在△AMN中,根据
AF•MN=AM•NE可以求出AF,然后即可求出AA',过A'作A'D⊥x轴于D,可以证明△ADA'∽△AFM,然后利用相似三角形的性质求出AD、OD的长度,在Rt△AA'D中利用勾股定理可以求出A′D、接着求出A′的坐标,再利用待定系数法可以确定过A'、B、C三点的抛物线的函数表达式.
解答:解:(1)A(6,0)(1分)
B(6,2)(2分)
C(0,2)(3分)
精英家教网

(2)由题意知,l必过矩形OABC的对角线的交点.
连接AC、OB,设交点为Q(如图1)
由矩形性质得Q(3,1)(1分)
把P(0,-
1
2
),Q(3,1)的坐标分别代入y=kx+b
b=-
1
2
3k+b=1

解得k=
1
2
b=-
1
2
(2分)
∴直线l的函数表达式是y=
1
2
x-
1
2


(3)由题知FM是直线y=
1
2
x-
1
2
与x轴的交点,精英家教网
当y=0时,x=1,
∴M(1,0),
∴OM=1,AM=5,由矩形的中心对称性,
得CN=AM=5,BN=OM=1,
过N作NE⊥x轴于E,
则AE=BN=1,ME=AM-AE=5-1=4,
又NE=2,
在Rt△MEN中,MN=
ME2+NE2
=
42+22
=2
5

连接AA'交l于F,由轴对称性质得AF⊥l(如图2),即AF⊥MN,AA'=2AF,
又连接AN,在△AMN中,AF•MN=AM•NE,
AF=
AM•NE
MN
=
5×2
2
5
=
5

∴AA'=2
5

过A'作A'D⊥x轴于D,
则△ADA'∽△AFM(一个直角对立相等及一个公共角)
AD
AF
=
AA′
AM
AD
5
=
2
5
5

∴AD=2,OD=6-2①,
在Rt△AA'D中,A′D=
A′A2-AD2
=
(2
5
)
2
-22
=4
②,
∴由①②得A'(4,4)(3分),
把A'(4,4),B(6,2),C(0,2)的坐标分别代入y=ax2+bx+c,
16a+4b+c=4
36a+6b+c=2
c=2

解得a=-
1
4
b=
3
2
,c=2,
∴过A'、B、C三点的抛物线的函数表达式是y=-
1
4
x2+
3
2
x+2
(4分).
点评:本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法确定抛物线解析式、直线的解析式及矩形的折叠问题和相似三角形的性质与判定.综合性很强,解题时一定要有信心和毅力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059

学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)

(1)按照这种规定填写下表:

(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.

(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在研究中心对称问题时发现:

如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.

如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;

(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案