精英家教网 > 初中数学 > 题目详情
如图,射线AM平行于射线BN,AB⊥BN且AB=3,C是射线BN上的一个动点,连接AC,作CD⊥AC且CD=AC,过C作CE⊥BN交AD于点E,设BC长为t.
(1)AC长为______
【答案】分析:(1)由AB⊥BN且AB=3,BC长为t,根据勾股定理的知识,即可求得AC的长,由作CD⊥AC且CD=AC,根据三角形面的求解方法即可求得△ACD的面积;
(2)过D作DF⊥BN交BN于点F,由∠ABC=∠CFD=90°,∠FDC=∠ACB,即可得△DFC∽△CBA,然后根据相似三角形的对应边成比例,即可求得点D到射线BN的距离;
(3)分别从①当EC=AE时,E为AD中点,EC=AD,②当AE=AC时,AM⊥DF,③当0≤t<12时,∠AEC为钝角,故AC≠CE,当t≥12时,CE≤DF<DC<AC去分析求解,即可得到当BC等于和6+3时,△ACE为等腰三角形.
解答:解:(1)∵AB⊥BN,
∴∠B=90°,
∵AB=3,BC长为t,
∴AC==
∵CD=AC=
∵CD⊥AC,
∴∠AD=90°,
∴△ACD的面积为:AC•CD=××=

(2)过D作DF⊥BN交BN于点F,
∵∠ABC=∠CFD=90°,∠FDC=∠ACB,
∴△DFC∽△CBA.
==
∴DF=,BC=t.
即点D到射线BN的距离为

(3)①如图,当EC=AE时,E为AD中点,EC=AD,
此时FC=BC,
∴t=
②如图,∵EC⊥BN,
∴AE≠AC,
③当t=0时,C与B重合,CD=AC,
可得DF=t=0,此时△AEC不能为等腰直角三角形,
当t=12时,CE≤DF<DC<AC,
∴当0≤t<12时,∠AEC为钝角,故AC≠CE,△ACE不能为等腰三角形;
当t≥12时,CE≤DF<DC<AC,此时△ACE不能为等腰三角形,
综上所述,当BC等于时,△ACE为等腰三角形.
点评:此题考查了相似三角形的判定与性质,直角三角形的性质等知识.解此题的关键是注意分类讨论思想,数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,射线AM平行于射线BN,AB⊥BN且AB=3,C是射线BN上的一个动点,连接AC,作CD⊥AC且CD=
12
AC,过C作CE⊥BN交AD于点E,设BC长为t.
(1)AC长为
 
,△ACD的面积为
 
(用含有t的代数式表示);
(2)求点D到射线BN的距离(用含有t的代数式表示);
(3)是否存在点C,使△ACE为等腰三角形?若存在,请求出此时BC的长度;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2009年江苏省南京市鼓楼区中考数学一模试卷(解析版) 题型:解答题

如图,射线AM平行于射线BN,AB⊥BN且AB=3,C是射线BN上的一个动点,连接AC,作CD⊥AC且CD=AC,过C作CE⊥BN交AD于点E,设BC长为t.
(1)AC长为______

查看答案和解析>>

科目:初中数学 来源:2012年山东省临沂市中考数学模拟试卷(八)(解析版) 题型:解答题

如图,射线AM平行于射线BN,AB⊥BN且AB=3,C是射线BN上的一个动点,连接AC,作CD⊥AC且CD=AC,过C作CE⊥BN交AD于点E,设BC长为t.
(1)AC长为______

查看答案和解析>>

科目:初中数学 来源:2011年江苏省南京市鼓楼区中考数学一模试卷(解析版) 题型:解答题

如图,射线AM平行于射线BN,AB⊥BN且AB=3,C是射线BN上的一个动点,连接AC,作CD⊥AC且CD=AC,过C作CE⊥BN交AD于点E,设BC长为t.
(1)AC长为______

查看答案和解析>>

同步练习册答案