精英家教网 > 初中数学 > 题目详情
(2012•樊城区模拟)如图,已知在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
m
x
(m≠0)的图象相交于A、B两点,且点B的纵坐标为-
1
2
,过点A作AC⊥x轴于点C,AC=1,OC=2.求:
(1)求反比例函数的解析式和一次函数的解析式;
(2)求不等式kx+b-
m
x
<0的解集(请直接写出答案).
分析:(1)由题意得,AC=1,OC=2,得出A点坐标,再将点A代入即可得出m,将AB两点代入一次函数y=kx+b求出k、b,从而得出答案;
(2)一次函数在反比例函数图象的上方时,自变量x的取值范围即可.
解答:解:(1)∵AC=1,OC=2,
∴A点坐标为:(2,1),
将A点坐标代入y2=
m
x

解得;m=2,
则y2=
2
x

∵点B的纵坐标为-
1
2

∴点B的横坐标为:-
1
2
=
2
x

解得:x=-4,
故B点坐标为:(-4,-
1
2
),
将A,B两点坐标代入y1=kx+b得:
2k+b=1
-4k+b=-
1
2

解得:
k=
1
4
b=
1
2

y1=
1
4
x+
1
2
;  
                                      
(2)∵不等式kx+b-
m
x
<0的解集即为:y1<y2的解集,
∴0<x<2或x<-4.
点评:本题考查了反比例函数和一次函数的交点问题,熟练掌握函数解析式的求法以及利用数形结合得出函数值大小关系是重点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•樊城区模拟)一个等腰三角形的两边长分别为5和2,则这个三角形的周长为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•樊城区模拟)先化简
2a+1
a2-1
a2-2a+1
a2-a
-
1
a+1
,然后从-1≤a≤cos30°中选择一个合适的无理数作为a的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•樊城区模拟)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是⊙O上一点(点B与点A、C不重合),若∠APC=32°,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•樊城区模拟)如图,O为∠EPF内射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A,B和C,D且AB=CD,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若弦AB=12,求四边形PAOC的面积;
(3)若以图中已标明的点(即P,A,B,C,D,O)构造四边形,则能构成等腰梯形的四个点为
P、C、O、B或P、A、O、D或A、B、D、C.
P、C、O、B或P、A、O、D或A、B、D、C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•樊城区模拟)如图,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求B、C两点坐标;
(2)抛物线y=
16
x2-bx+c经过A、O两点,求抛物线的解析式,并验证点C是否在抛物线上;
(3)在x轴上是否存在一点P,使△PCM与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案