精英家教网 > 初中数学 > 题目详情
为二次函数的图象上的三点,则的大小关系是    .
y2<y1<y3

试题分析:将二次函数y=x2+4x﹣5配方,求对称轴,再根据A、B、C三点与对称轴的位置关系,开口方向判断yl,y2,y3的大小.
∵y=x2+4x﹣5=(x+2)2﹣9,
∴抛物线开口向上,对称轴为x=﹣2,
∵A、B、C三点中,B点离对称轴最近,C点离对称轴最远,
∴y2<y1<y3
故答案是y2<y1<y3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某超市经销一种销售成本为每件20元的商品.据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y件.
(1)写出y与x的函数关系式及自变量x的取值范围;
(2)该超市想通过销售这种商品一周获得利润8000元,销售单价应定为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

宁波元康水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.
(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
(2)若该批发商单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).

(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣)].

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数.

(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为
A.y=(x-2)2B.y=x2C.y=x2+6D.y=(x-2)2+6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的对称轴是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当a<0时,抛物线y=x2+2ax+1+2a2的顶点在(      )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,直线和抛物线在第一象限交于点A,过A作轴于点.如果取1,2,3,…,n时对应的△的面积为,那么_____;_____.

查看答案和解析>>

同步练习册答案