分析 (1)作AE⊥BC,根据△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得$\frac{CA}{CB}=\frac{CD}{CA}$,结合∠C=∠C,可证得△ADC∽△BAC;
(2)由△ADC∽△BAC得$\frac{AD}{BA}=\frac{AC}{BC}$,求出AD的长,根据AE⊥BC得DE=$\frac{1}{2}$CD=1,由勾股定理求得AE的长,最后根据正弦函数的定义可得.
解答 解:(1)如图,作AE⊥BC于点E,
∵$\frac{{S}_{△ACD}}{{S}_{△ABD}}$=$\frac{\frac{1}{2}CD•AE}{\frac{1}{2}BD•AE}$=$\frac{CD}{BD}$=$\frac{1}{3}$,
∴BD=3CD=6,
∴CB=CD+BD=8,
则$\frac{CA}{CB}=\frac{4}{8}$=$\frac{1}{2}$,$\frac{CD}{CA}=\frac{2}{4}=\frac{1}{2}$,
∴$\frac{CA}{CB}=\frac{CD}{CA}$,
∵∠C=∠C,
∴△ADC∽△BAC;
(2)∵△ADC∽△BAC,
∴$\frac{AD}{BA}=\frac{AC}{BC}$,即$\frac{AD}{8}=\frac{4}{8}$,
∴AD=AC=4,
∵AE⊥BC,
∴DE=$\frac{1}{2}$CD=1,
∴AE=$\sqrt{A{D}^{2}-D{E}^{2}}$=$\sqrt{15}$,
∴sinB=$\frac{AE}{AB}$=$\frac{\sqrt{15}}{8}$.
点评 本题主要考查相似三角形的判定与性质及勾股定理、等腰三角形的性质、三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | $\overrightarrow a-2\overrightarrow b$ | B. | $\frac{5}{2}\overrightarrow a-\overrightarrow b$ | C. | $\overrightarrow a-\frac{2}{3}\overrightarrow b$ | D. | $\frac{1}{2}\overrightarrow a-\overrightarrow b$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | m•sinα | B. | m•cosα | C. | m•tanα | D. | m•cotα |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com