精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.

1)已知原抛物线表达式是,求它的影子抛物线的表达式;

2)已知原抛物线经过点(10),且它的影子抛物线的表达式是,求原抛物线的表达式;

3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.

【答案】1;(2;(3)结论成立,理由见解析

【解析】

1)设影子抛物线表达式是,先求出原抛物线的顶点坐标,代入,可求解;

2)设原抛物线表达式是,用待定系数法可求,即可求解;

3)分别求出两个抛物线的顶点坐标,即可求解.

解:(1原抛物线表达式是

原抛物线顶点是

设影子抛物线表达式是

代入,解得

所以影子抛物线的表达式是

2)设原抛物线表达式是

则原抛物线顶点是

代入,得①,

代入②,

由①、②解得

所以,原抛物线表达式是

3)结论成立.

设影子抛物线表达式是.原抛物线于轴交点坐标为

则两条原抛物线可表示为与抛物线(其中是常数,且

由题意,可知两个抛物线的顶点分别是

分别代入

消去

关于轴对称.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°AC4BC3.直径为5的⊙O分别与ACBC相切于点FE,与AB交于点MN,过点OOPMNP,则OP的长为(  )

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠C=90°,AC=BC=,将ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接CB,则CB的长为(  )

A. B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴交于点,与轴交于点且与反比例函数在第一象限的图象交于点轴于点.

根据函数图象,直接写出当反比例函数的函数值时,自变量的取值范围;

动点轴上,轴交反比例函数的图象于点..求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点的直径延长线上,点上,过,与的延长线相交于的切线,

1)求证:

2)求的长;

3)若的平分线与交于点的内心,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx3a0)与直线ykx+ck0)相交于A(﹣10)、B2,﹣3)两点,且抛物线与y轴交于点C

1)求抛物线的解析式;

2)求出CD两点的坐标

3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为原点,O的半径为1,点A的坐标为(20),动点BO上,以AB为边作等边△ABC(顺时针),则线段OC的最小值为_____

查看答案和解析>>

同步练习册答案