精英家教网 > 初中数学 > 题目详情
22、已知关于x的方程①x2+(2k-1)x+(k-2)(k+1)=0和②kx2+2(k-2)x+k-3=0.
(1)求证:方程①总有两个不相等的实数根;
(2)已知方程②有两个不相等的实数根,求实数k的取值范围.
分析:(1)求证:方程①总有两个不相等的实数根,就是证明判别式△恒大于0;
(2)方程②有两个“不相等”的实数根,即根的判别式“△≥0”?,即可得到一个关于k的不等式,从而确定k的取值范围.
解答:(1)证明:对于①a=1,b=2k-1,c=(k-2)(k+1).
∴△=b2-4ac=9>0.
∴方程①总有两个不相等的实数根.

(2)解:对于方程②a=k,b=2(k-2),c=k-3.
∴△=b2-4ac=16-4k>0.
∴k<4,且k≠0.
点评:此题有一定的难度,用到一元二次方程的根的判别式,又用到根与系数的关系和求根公式,计算时要细心,做到条理清晰,计算准确.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并直接写出以这两根为直角边的直角三角形外接圆半径的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程m(x-1)=4x-m的解是-4,求m2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程4x-3m=2的解是x=m,则m=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程|x|=ax-a有正根且没有负根,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程3x2-4x•sinα+2(1-cosα)=0有两个不相等的实数根,α为锐角,那么α的取值范围是
 

查看答案和解析>>

同步练习册答案