精英家教网 > 初中数学 > 题目详情
如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下四个结论:①S△AEC=2S△DEO;②AC=2CD;③线段OD是DE与DA的比例中项;④2CD2=CE•AB.其中正确结论的序号是
①④
①④
分析:①首先易证得AC∥OD,即可得△AEC∽△DEO,然后过点E作EM⊥AC于点M,可得CE=
2
CM=
2
EO,根据相似三角形的面积比等于相似比的平方,即可证得①正确;
②易证得
AG
=
CG
=
CD
,即可得AG=CG=CD,然后由三角形三边关系,证得AC<2CD;
③易得△ADO和△DOE不相似,可得线段OD不是DE与DA的比例中项;
④可证得△CED∽△CDO,根据相似三角形的对应边成比例,可得CD2=OC•CE=
1
2
AB•CE,即可证得结论.
解答:解:①∵AD平分∠CAB,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴△AEC∽△DEO,
过点E作EM⊥AC于点M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分别交OC于点E,EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=
2
CM=
2
EO,
∴CE:OE=
2
:1,
∴S△AEC=2S△DEO;故正确;
②过点O作OG⊥AC,
AG
=
CG

∵AD平分∠CAB,
CD
=
BD

∵半径OC⊥AB,
AC
=
BC

AG
=
CG
=
CD

∴AG=CG=CD,
∴2CD>AC,
故错误;
③∵AD平分∠CAB交弧BC于点D,
∴∠DAB=∠CAD=
1
2
∠CAB=22.5°,
∴∠COD=45°,
∵AC∥DO,
∴∠CAD=∠ADO=22.5°,
∴△ADO是等腰三角形,
△DOE中,∠ADO=22.5°,∠EOD=45°,
∴△ADO和△DOE不相似,
∴线段OD不是DE与DA的比例中项,
故错误;
④∵AB是半圆直径,
∴OC=OD,
∴∠OCD=∠ODC=67.5°,
∵∠CAD=∠ADO=22.5°,
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
∴CD:OC=CE:CD,
∴CD2=OC•CE=
1
2
AB•CE,
∴2CD2=CE•AB.
故正确.
故答案为:①④.
点评:此题考查了相似三角形的判定与性质、平行线的判定与性质、圆周角定理以及角平分线的性质.此题难度较大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正确结论的序号是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)如图,AB是半圆O直径,半径OC⊥AB,连接AC,∠CAB的平分线AD分别交OC于点E,交
BC
于点D,连接CD、OD,以下三个结论:①AC∥OD;②AC=2CD;③线段CD是CE与CO的比例中项,其中所有正确结论的序号是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CD=DE;③△ODE∽△ADO;④2CD2=CE•AB.其中正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•武汉模拟)如图,AB是半圆直径,半径OC⊥AB于点D,AD平分∠CAB交弧
BC
于点D,连接CD、OD.下列结论:①AC∥OD;②CE=OE;③∠OED=∠AOD;④CD=DE.其中正确结论的个数有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上城区二模)如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,交OC于点E,连接CD,OD.给出以下四个结论:①S△DEC=
2
S△AEO;②AC∥OD;③线段OD是DE与DA的比例中项;④2CD2=CE•AB.其中结论正确的是(  )

查看答案和解析>>

同步练习册答案