精英家教网 > 初中数学 > 题目详情

若抛物线y=ax2+bx+3与y=-x2+3x+2的两交点关于原点对称,则ab=________.

-
分析:设两交点坐标为(x1,y1),(x2,y2),因为抛物线的交点和关于原点对称,则x1+x2=0,y1+y2=0,构造方程组即可得到(a+1)x2+(b-3)x+1=0,由x1+x2=0,求出b的值,再求出a的值,代入ab即可求出答案.
解答:由题可得:ax2+bx+3=-x2+3x+2,
(a+1)x2+(b-3)x+1=0.
∵两交点关于原点对称,那么两个横坐标的值互为相反数;两个纵坐标的值也互为相反数.
则两根之和为:-=0,两根之积为<0(关于原点对称的点的横坐标、纵坐标分别互为相反数),
解得b=3,a<-1.
设两个交点坐标为(x1,y1),(x2,y2).
这两个根都适合第二个函数解析式,
代入第二个函数解析式得:y1=-x12+3x1+2,y2=-x22+3x2+2
那么y1+y2=-(x12+x22)+3 (x1+x2)+4=0,
∵x1+x2=0,
∴y1+y2=-(x1+x22+2x1x2+4=0,
解得x1x2=-2,
代入两根之积得=-2,
解得a=-
故a=-,b=3.
∴ab=3×(-)=-
故答案为:-
点评:本题主要考查了二次函数的性质,解二元一次方程组,根与系数的关系等知识点,解此题的关键是构造方程组得到两根之和和两根之积,进一步求出a、b的值.此题难度较大,综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M精英家教网.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)
,对称轴公式为x=-
b
2a

查看答案和解析>>

科目:初中数学 来源: 题型:

若抛物线y=ax2+bx+c的开口向上,且经过原点,请写出符合上述条件的一个解析式
y=x2
y=x2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•镇江模拟)已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.
(1)如图,若A点恰好是抛物线的顶点,请写出它的对称轴和t的值.
(2)若t=-4,求a、b的值,并指出此时抛物线的开口方向.
(3)若抛物线y=ax2+bx的开口向下,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平谷区一模)如图,在直角坐标系中,已知直线y=
1
2
x+1
与y轴交于点A,与x轴交于点B,以线段BC为边向上作正方形ABCD.
(1)点C的坐标为
(-3,2)
(-3,2)
,点D的坐标为
(-1,3)
(-1,3)

(2)若抛物线y=ax2+bx+2(a≠0)经过C、D两点,求该抛物线的解析式;
(3)若正方形以每秒
5
个单位长度的速度沿射线BA向上平移,直至正方形的顶点C落在y轴上时,正方形停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

若抛物线y=ax2+x+1(a≠0)的顶点始终在x轴的上方,则a的取值范围
a>
1
4
或a<0
a>
1
4
或a<0

查看答案和解析>>

同步练习册答案