分析 首先过点D作DF⊥BC于点F,由BD=2$\sqrt{10}$,tan∠DBC=$\frac{1}{3}$,可求得DF的长,继而求得平行四边形ABCD的面积.
解答 解:过点D作DF⊥BC于点F,
∵tan∠DBC=$\frac{1}{3}$,
∴sin∠DBC=$\frac{\sqrt{10}}{10}$,
∴DF=BD•sin∠DBC=2$\sqrt{10}$×$\frac{\sqrt{10}}{10}$=2,
∵在平行四边形ABCD中,AD=5,
∴BC=AD=5,
∴平行四边形ABCD的面积是:BC•DF=5×2=10.
故答案为:10.
点评 此题考查了平行四边形的性质以及三角函数的性质.注意准确作出辅助线是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 平均数 | B. | 众数 | C. | 中位数 | D. | 最大值 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com