精英家教网 > 初中数学 > 题目详情
8.计算:$\frac{3}{2}$$\sqrt{2}$+$\frac{1}{4}$$\sqrt{2}$-3$\sqrt{2}$.

分析 根据二次根式的加减法则合并同类二次根式即可.

解答 解:原式=($\frac{3}{2}$+$\frac{1}{4}$-3)$\sqrt{2}$
=-$\frac{5}{4}$$\sqrt{2}$.

点评 本题考查了二次根式的加减,能根据法则正确合并同类二次根式是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,已知抛物线y=-x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面的文字,解答问题:
大家知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能全部地写出来,于是小明用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为$\sqrt{2}$的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:
∵$\sqrt{4}$<$\sqrt{7}$<$\sqrt{9}$,即2<$\sqrt{7}$<3,
∴$\sqrt{7}$的整数部分为2,小数部分为($\sqrt{7}$-2).
请解答:(1)$\sqrt{17}$的整数部分是4,小数部分是$\sqrt{17}$-4.
(2)如果$\sqrt{5}$的小数部分为a,$\sqrt{13}$的整数部分为b,求a+b-$\sqrt{5}$的值;
(3)已知:10+$\sqrt{3}$=x+y,其中x是整数,且0<y<1,求x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G(  已知  )
∴∠ADC=90°,∠EGC=90°(垂直的定义)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(同位角相等,两直线平行)
∴∠1=∠3(两直线平行,内错角相等)
∠2=∠E(两直线平行,同位角相等)
又∵∠E=∠3( 已知)
∴∠1=∠2(等量代换)
∴AD平分∠BAC(角平分线定义).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$-$\sqrt{(-1)^{2}}$+($\sqrt{2}$-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.方程12-x=2x的解是x=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB∥CD,∠1=30°,2=40°,试求∠EPF的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知平行四边形ABCD中,E是BC的中点,连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF,求证:四边形ABFC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在△ABC中,AB=AC=5,cos∠ABC=$\frac{3}{5}$,将△ABC绕点C顺时针旋转,得到△A1B1C,且点B1在线段BA延长线上(如图).
(1)求证:BB1∥CA1
(2)求△A1B1C的面积.

查看答案和解析>>

同步练习册答案