精英家教网 > 初中数学 > 题目详情
2、若自然数n使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有(  )个.
分析:首先根据题意求出个位数和十位数满足的条件,然后根据能构成“连绵数”的条件求出不超过100的“连绵数”的个数.
解答:解:根据题意个位数需要满足要求:
∵n+(n+1)+(n+2)<10,即N<2.3,
∴个位数可取0,1,2三个数,
∵十位数需要满足:3n<10,
∴n<3.3,
∴十位可以取0,1,2,3四个数,
故四个数的连绵数共有3×4=12个.
故选C.
点评:本题主要考查整数的十进制表示法的知识点,解答本题需要从个位数和十位数需要满足的要求着手.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若自然数n使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有(  )个.
A.9B.11C.12D.15

查看答案和解析>>

科目:初中数学 来源:竞赛辅导:整数的基本知识4(解析版) 题型:选择题

若自然数n使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有( )个.
A.9
B.11
C.12
D.15

查看答案和解析>>

同步练习册答案