精英家教网 > 初中数学 > 题目详情
1.问题提出:有同样大小正方形256个,拼成如图1所示的16×16的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过多少个小正方形?

我们先考虑以下简单的情况:一条直线穿越一个正方形的情况.(如图2)
从图2中我们可以看出,当一条直线穿过一个小正方形时,这条直线最多与正方形上、下、左、右四条边中的两个边相交,所以当一条直线穿过一个小正方形时,这条直线会与其中某两条边产生两个交点,并且以两个交点为顶点的线段会全部落在小正方形内.
这就启发我们:为了求出直线L最多穿过多少个小正方形,我们可以转而去考虑当直线L穿越由小正方形拼成的大正方形时最多会产生多少个交点.然后由交点数去确定有多少根小线段,进而通过线段的根数确定下正方形的个数.
再让我们来考虑3×3正方形的情况(如图3):为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个3×3的正方形,我们从两个方向来分析直线l穿过3×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的两条线段;从左右来看,这条直线最多可穿过左右平行的四条线段;这样直线L最多可穿过3×3的大正方形中的六条线段,从而直线L上会产生6个交点,这6个交点之间的5条线段,每条会落在一个不同的正方形内,因此直线L最多能经过5个小正方形.
问题解决:
(1)有同样大小的小正方形16个,拼成如图4所示的4×4的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过7个小正方形?
(2)有同样大小的小正方形100个,拼成10×10的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过19个小正方形?
(3)有同样大小的小正方形256个,拼成16×16的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过31个小正方形?
(4)请问如果用一条直线穿n×n大正方形的话,最多可以穿过2n-1个小正方形?
拓展探究:
(5)请问如果用一条直线穿2×3大长方形的话(如图5),最多可以穿过4个小正方形?
(6)请问如果用一条直线穿3×4大长方形的话(如图6),最多可以穿过6个小正方形?
(7)请问如果用一条直线穿m×n大长方形的话,最多可以穿过m+n-1个小正方形?
请将你的推理过程进行简要的叙述.
类比探究:由二维的平面我们可以联想到三维的立体空间,平面中的正方形中四条边可联想到正方体中的正方形的六个面,类比上面问题解决的方法解决如下问题.
(8)如图①有同样大小的小正方体8个,拼成如图①所示的2×2×2的一个大的正方体.请问如果用一条直线穿过这个大正方体的话,最多可以穿过多少个小正方体?

(9)请问如果用一条直线穿过n×n×n大正方体的话,最多可以穿过多少个小正方体?

分析 (1)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个4×4的正方形,我们从两个方向来分析直线l穿过4×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的3条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L最多可穿过4×4的大正方形中的8条线段,从而直线L上会产生8个交点,这8个交点之间的7条线段,这样就不难得到答案.
(2)应用规律2n-1得到答案.
(3)应用规律2n-1得到答案.
(4)应用规律2n-1得到答案.
(5)我们不妨假设直线L右上方至左下方穿过一个2×3的正方形,我们从两个方向来分析直线l穿过2×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的1条线段;从左右来看,这条直线最多可穿过左右平行的4条线段;这样直线L最多可穿过2×3的大正方形中的5条线段,从而直线L上会产生5个交点,这5个交点之间的4条线段,每条会落在一个不同的正方形内,因此直线L最多能经过4个小正方形.
(6)不妨假设直线L右上方至左下方穿过一个3×4的正方形,我们从两个方向来分析直线l穿过3×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的2条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L最多可穿过4×4的大正方形中的7条线段,从而直线L上会产生7个交点,这7个交点之间的6条线段,每条会落在一个不同的正方形内,因此直线L最多能经过6个小正方形.
(7)不妨假设直线L右上方至左下方穿过一个m×n的正方形,我们从两个方向来分析直线l穿过m×n正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的(m-1)条线段;从左右来看,这条直线最多可穿过左右平行的(n+1)条线段;这样直线L最多可穿过4×4的大正方形中的(m+n)条线段,从而直线L上会产生(m+n)个交点,这m+n个交点之间的(m+n-1)条线段,每条会落在一个不同的正方形内,因此直线L最多能经过(m+n-1)个小正方形.
(8)用类似的方法得到规律:3n-2.即可解决.
(9)根据规律3n-2得到答案.

解答 解:(1)再让我们来考虑4×4正方形的情况(如图4):为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个4×4的正方形,我们从两个方向来分析直线l穿过4×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的3条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L最多可穿过4×4的大正方形中的8条线段,从而直线L上会产生8个交点,这8个交点之间的7条线段,每条会落在一个不同的正方形内,因此直线L最多能经过7个小正方形.
故答案为7
(2)我们发现直线穿越1×1正方形时最多经过1个正方形,直线穿越2×2正方形时最多经过3个正方形,直线穿越3×3正方形时最多经过5个正方形,
直线穿越4×4正方形时最多经过7个正方形,…直线穿越n×n正方形时最多经过2n-1个正方形.
∴直线穿越10×10正方形时最多经过19个正方形.
故答案为19.
(3)由(2)可知,有2×16-1=31个正方形,
故答案为31.
(4)由(2)可知有2n-1个正方形.
故答案为2n-1.
(5)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个2×3的正方形,我们从两个方向来分析直线l穿过2×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的1条线段;从左右来看,这条直线最多可穿过左右平行的4条线段;这样直线L最多可穿过2×3的大正方形中的5条线段,从而直线L上会产生5个交点,这5个交点之间的4条线段,每条会落在一个不同的正方形内,因此直线L最多能经过4个小正方形,
故答案为4.
(6)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个3×4的正方形,我们从两个方向来分析直线l穿过3×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的2条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L最多可穿过4×4的大正方形中的7条线段,从而直线L上会产生7个交点,这7个交点之间的6条线段,每条会落在一个不同的正方形内,因此直线L最多能经过6个小正方形.
故答案为6.
(7)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个m×n的正方形,我们从两个方向来分析直线l穿过m×n正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的(m-1)条线段;从左右来看,这条直线最多可穿过左右平行的(n+1)条线段;这样直线L最多可穿过4×4的大正方形中的(m+n)条线段,从而直线L上会产生(m+n)个交点,这m+n个交点之间的(m+n-1)条线段,每条会落在一个不同的正方形内,因此直线L最多能经过(m+n-1)个小正方形,
故答案为(m+n-1).
(8)用类似的方法可以得到:用一条直线穿过1×1×1正方体的话,最多可以穿过1个小正方体,用一条直线穿过,2×2×2正方体的话,最多可以穿过4个小正方体,用一条直线穿过,3×3×3正方体的话,最多可以穿过7个小正方体,用一条直线穿过4×4×4正方体的话,最多可以穿过10个小正方体,…用一条直线穿过,n×n×n正方体的话,最多可以穿过(3n-2)个小正方体.
故答案为4.
(9)由(8)可知有(3n-2)个正方形,
故答案为(3n-2).

点评 本题考查线线相交得点、以及正方形、立方体的有关知识,是个探究题目,学会从简单到复杂的推理方法,找到规律即可解决问题,本题难度比较大,从穿过的线段入手,找到问题的突破口,这个方法值得在以后的学习中应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,它是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则代数式a-(b-c)=-2014(填数值).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:有理数m所表示的点到点3距离5个单位长度,a,b互为相反数且都不为零,c,d互为倒数.
求:2a+2b+($\frac{a}{b}$-3cd)-m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若x1,x2是方程3x2-2x-1=0的两个实数根,则2x1+2x2=$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.观察“探究性学习”小组的甲、乙两名同学进行的因式分解:
甲:x2-xy+4x-4y=(x2-xy)+(4x-4y)    分成两组
=x(x-y)+4(x-y)              各组提公因式
=(x-y)(x+4).
乙:a2-b2-c2+2bc=a2-(b2+c2-2bc)
=a2-(b-c)2=(a+b-c)(a-b+c).
请你在他们解法的启发下,因式分解:4x2+4x-y2+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,AD是BC边上的高,⊙P是△ABC的外接圆.
(1)如图1,若AD=5,BD=1,BC=6,求⊙P的半径;
(2)如图2,若∠ABC=75°,∠ACB=45°,I是△ABC的内心,求$\frac{AI}{AP}$的值;
(3)如图3,若∠ABC-∠ACB=30°,当B,C运动时,$\frac{DC-BD}{AP}$的值是否变化?若不变,求出其值;若变化,求出其变化的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,AB=CF=15cm,等腰Rt△ABC以3m/s的速度沿直线向正方形GDEF移动,直到AB与DE重合时才停止(开始C与G重合),设x s时,等腰Rt△ABC与正方形GDEF重叠部分的面积为y m2
(1)几秒后,线段AB与GF重合?几秒后,线段AB与DE重合?
(2)写出y与x的关系表达式;
(3)当重叠面积是正方形面积的$\frac{1}{3}$时,三角形移动了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,正方形ABCD中,E、F分别在BC、CD上,且AE=BE+DF
(1)求证:∠DAE=2∠DAF;
(2)过D作DH⊥AF于H,连接CH,且∠CHF=45°,探究FH与AE的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,数轴上点A、B所表示的两个数的和的相反数是-1.

查看答案和解析>>

同步练习册答案