精英家教网 > 初中数学 > 题目详情
已知正方形ABCD,P为直线BC上一点,连接PA,过点P作PE⊥PA交∠DCM的平分线于点E,过点E作EH⊥BM,垂足为H,
(1)当点P在线段BC上时,求证:PC+EH=AB;
(2)当点P在BC的延长线上时,则PC、EH、AB之间的数量关系是
 

(3)当点P在CB的延长线上时,连接AC、AE,若S四边形APEC=
9
2
,CE=
2
,求AE的长.
考点:四边形综合题
专题:综合题
分析:(1)由ABCD为正方形,得到AB=BC=BP+PC,且∠DCM为直角,根据CE为角平分线,得到∠ECM=45°,即三角形ECM为等腰直角三角形,可得出PC+CH=PC+EH,利用两对角相等的三角形相似得到三角形ABP与三角形PHE相似,由相似得比例,等量代换即可得证;
(2)AB=EH-PC,理由为:同(1)得到得到三角形ABP与三角形PHE相似,由相似得比例,等量代换即可得证;
(3)同(1)得到得到三角形ABP与三角形PHE相似,由相似得比例,等量代换得到AB=PH,利用同角的余角相等得到一对角相等,再由一对直角相等,利用ASA得到三角形PBA与三角形PHE全等,由全等三角形对应边相等得到AB=PH,由PC=PH+HC,等量代换得到PC=AB+HE,由三角形ECH为等腰直角三角形,根据CE的长求出HE与CH的长,表示出四边形APEC的面积,将已知面积代入求出PC的长,进而求出AB与AC的长,在直角三角形ACE中,利用勾股定理即可求出AE的长.
解答:解:(1)∵正方形ABCD,
∴AB=BC=BP+PC,∠DCM=90°,
∵CE为∠DCM的平分线,
∴∠ECM=45°,
∴EH=CH,
∴PC+CH=PC+EH,
∵AB⊥BC,EH⊥BM,AP⊥PE,
∴∠B=∠H,
∴∠BAP+∠APB=90°=∠APB+∠EPH,
∴∠BAP=∠EPH,
∴△ABP∽△PHE,
AB
BP
=
PH
EH
,即
BP+PC
BP
=
PC+EH
EH

1+PC
BP
=
1+PC
EH

∴BP=EH=CH,
∴AB=BC=BP+PC=PC+EH;
(2)如图同(1)可证△ABP∽△EHP,
BP
AB
=
EH
PH
,即
AB+PC
AB
=
EH
EH-PC

1+PC
AB
=
EH
EH-PC

PC
AB
=
EH
EH-PC
-1=
PC
EH-PC

∴AB=EH-PC;
故答案为:AB=EH-PC;
(3)如图同(2)可证△ABP∽△PHE,
PB
AB
=
EH
PH
,即
PC-AB
AB
=
EH
PC-EH

PC
AB
-1=
EH
PC-EH

PC
AB
=
EH
PC-EH
+1=
PC
PC-EH

∴AB=PC-EH=PC-CH=PH,
∵∠APB+∠HPE=90°,∠BAP+∠APB=90°,
∴∠HPE=∠BAP,
在△ABP和△PHE中,
∠BAP=∠HPE
AB=PH
∠ABC=∠PHE=90°

∴△ABP≌△PHE(ASA),
∴AB=PH,
∴PC=PH+HC=AB+EH,
由题意得:△CHE为等腰直角三角形,
∴EH=HC=
2
2
CE=1,
∵SAPEC=S△APC+S△EPC=
1
2
PC•AB+
1
2
PC•EH=
1
2
PC(AB+EH)=
1
2
PC2=
9
2

解得:PC=3,
∴AB=PC-EH=3-1=2,
∴AC=
2
AB=2
2

则AE=
AC2+CE2
=
8+2
=
10
点评:此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,比例的性质,正方形的性质,勾股定理,以及等腰直角三角形的性质,熟练掌握判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

根据现有知识,若已知10a=200,10b=
1
5
时,不能求出a和b的值,但是小红却利用它们做出了2a÷2b的值,你知道她是怎么计算的吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,△ABC是等边三角形,D是BC上一点,点E在BA的延长线上,且BD=AE,证明:CE=DE;
(2)若点D是BC延长线上一点,其余条件不变,上题的结论是否仍然成立?请画出图形,作出判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,商场决定适当降价.经调查发现,若每件衬衫降价0.5元,则商场平均每天可多售出1件.若商场每天要盈利1200元,每件衬衫降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

平行四边形ABCD中,AC、BD交于O,E为AB上一点,EH∥AC,交BC于H,HO的延长线交AD于F.连接EF.求证:EF∥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

现有两种灯:一种是12瓦(即0.012千瓦)的节能灯,售价为60元;另一种是60瓦(即0.06千瓦)的白炽灯,售价3元.两种灯的照明效果相同,使用寿命都可以达到3000h.如果电费是0.5元/千瓦时,即功率为1千瓦的灯用电1h的电费为0.5元.
(1)如果设两种灯均照明xh,请用含x的代数式表示两种灯的费用(含电费与售价);
(2)照明多少小时两种灯的费用相等?
(3)若需要照明时间为2200h,选用哪种灯可以节省费用?若照明时间为2800h呢?
(4)如果计划照明4000h,则需要购买两个灯,你能设计出能省钱的购买方案吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知O是矩形ABCD的对角线的交点,过点O作OE⊥AC交AB于E,△AOE的面积为5,AE比BC大1,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

大小排序:
(1)3,4,3
50

(2)2,
5
,3
7

查看答案和解析>>

科目:初中数学 来源: 题型:

当y=
 
时,代数式
y-8
3
1
4
y+5的值相等.

查看答案和解析>>

同步练习册答案