精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为(
A.12
B.15
C.16
D.18

【答案】B
【解析】解:∵四边形ABCD为平行四边形,∠A=120°,

∴∠B=∠D=60°,AB=CD=4,AD=BC=5,

∴六边形AEFCGH的每个内角都是120°,

∴∠BEF=∠BFE=60°,∠DHG=∠DGH=60°,

∴EF=BE=BF=1,HG=HD=DG=2,

∴六边形的周长为:AE+EF+CF+CG+HG+AH=AB+(BC﹣BF)+CD+(AD﹣HD)=4+(5﹣1)+4+(5﹣2)=15,

故选B.

【考点精析】通过灵活运用平行四边形的性质,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC的三边长分别为abc,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判断△ABC是直角三角形的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:

信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;

信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.

根据以上信息,原来报名参加的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.

(1)求证:CD是⊙O的切线.
(2)若 ,求∠E的度数.
(3)连接AD,在(2)的条件下,若CD= ,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC,∠CAB=30°,AC=8,半径为2的⊙O从点A开始(如图1)沿直线AB向右滚动,滚动时始终与直线AB相切(切点为D),当⊙O与△ABC只有一个公共点时滚动停止,作OG⊥AC于点G.
(1)图1中,⊙O在AC边上截得的弦长AE=
(2)当圆心落在AC上时,如图2,判断BC与⊙O的位置关系,并说明理由.
(3)在⊙O滚动过程中,线段OG的长度随之变化,设AD=x,OG=y,求出y与x的函数关系式,并直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,E是边DC上一点,连接AEBC的延长线于点H,点F是边AB上一点,使得,作的角平分线BH于点G,若,则的度数是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中(AB>BC),AC=2BC,BC边上的中线AD把ABC的周长分成60和40两部分,求AC和AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求进行计算:
(1)计算:(﹣1)5+15×3﹣2
(2)求不等式组: 的所有整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.

查看答案和解析>>

同步练习册答案