精英家教网 > 初中数学 > 题目详情

【题目】解不等式组 ,并求其整数解.

【答案】解: ∵解不等式①得:x≥2,
解不等式②得:x<6,
∴不等式组的解集为2≤x<6,
∴不等式组的整数解为2,3,4,5.
【解析】先求出每个不等式的解集,再求出不等式组的解集即可.
【考点精析】解答此题的关键在于理解一元一次不等式组的解法的相关知识,掌握解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ),以及对一元一次不等式组的整数解的理解,了解使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集(简称不等式组的解).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=1+2.善于思考的小明进行了以下探索:

a+b=m+n2(其中abmn均为整数),则有a+b=m2+2n2+2mn

a=m2+2n2b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

1abmn均为正整数时,若a+b=m+n)2,用含mn的式子分别表示ab,得:a= b= 

2利用探索的结论,找一组正整数abmn ab都不超过20

填空:   +  =   +   2

3)若a+6=(m+n)2,且amn均为正整数,求a的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF

1)求证△BED≌△CFD.

2)已知EC=6,AC=10,求BE.

3)当∠C=45°时,判断△DFC的周长与线段AC长度的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCDABDCB90°FDC上一点FCABEAD上一点ECAF于点G.

(1)求证:四边形ABCF是矩形;

(2)EDEC求证:EAEG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为(2,-2),B的坐标为(-4,2),若点A1的坐标为(3,-1).

:(1)O1,B1的坐标.

(2)三角形AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形ABCD的对角线相交于点OEFGH分别是AOBOCODO的中点请问四边形EFGH是矩形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.

(1)问原来规定修好这条公路需多少长时间?

(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.

(1)求证:BEF≌△CDF.

(2)连接BD,CE,若∠BFD=2A,求证四边形BECD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O△ABC内一点,连结OBOC,并将ABOBOCAC的中点DEFG依次连结,得到四边形DEFG

1)求证:四边形DEFG是平行四边形;

2)若MEF的中点,OM=3∠OBC∠OCB互余,求DG的长度.

查看答案和解析>>

同步练习册答案