精英家教网 > 初中数学 > 题目详情

【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”
译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)
你的计算结果是:出南门 步而见木.

【答案】315
【解析】解:

由题意得,AB=15里,AC=4.5里,CD=3.5里,
△ACB∽△DEC,

解得,DE=1.05里=315步,
∴走出南门315步恰好能望见这棵树,
故答案为:315.
根据题意写出AB、AC、CD的长,根据相似三角形的性质得到比例式,计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于xy的多项式(m2+n+3xy2+3xy5

1)若原多项式是五次多项式mn的值

2)若原多项式是五次四项式mn的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强电动自行车质量监管,切实保障消费者的合法权益,2015年11月,河南开封市工商局对24个品牌批次的电动自行车进行抽查检验,其中抽查检验的某品牌的电动自行车如图所示,它的大灯M射出的光线MA,MB的与MN的夹角分别为76°和60°,MN⊥地面CD,MN=0.8m,图中的阴影部分表示在夜晚时,灯M所照射的范围.(提示:≈1.7,sin14° , cos14°≈ , tan14
(1)求阴影部分的面积;
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s.小鹏某天晚上以6m/s的速度驾驶该车,在行驶的途中,通过大灯M,他发现在他的正前方有一个小球(即小孩在图中的点A处),小鹏从做出刹车动作到电动自行车停止的刹车距离为1.3m,请判断小鹏当时是否有撞到该小孩?(大灯M与前轮前端间的水平距离为0.3m).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明是个爱探究的学生,在学习完等腰三角形的判定定理之后,对于等腰(如图甲),若,,小明发现,只要作的平分线就可以将分成两个等腰三角形.

(1)你认为小明的发现正确吗?若正确,请给出证明过程;若不正确,请说明理由;

(2)请你对图乙的三角形进行探索,将分成两个等腰三角形,并写出顶角度数;

(3)请你对图丙的三角形进行再探索,将分成三个等腰三角形,并写出顶角度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB=100°,COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于且小于等于180°的角).

(1)如图1,当OB、OC重合时,求∠EOF的度数;

(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣BOF的值是否为定值?若是定值,求出∠AOE﹣BOF的值;若不是,请说明理由.

(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+EOF=6COD,则n=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将-2,-1,0,1,2,3,4,5,6,7这10个数分别填写在五角星中每两条线的交点处(每个交点处只填写一个数),将每一条线上的4个数相加,共得5个数,设为a1,a2,a3,a4,a5.

(1)求(a1+a2+a3+a4+a5)的值;

(2)交换其中任何两位数的位置后,(a1+a2+a3+a4+a5)的值是否改变?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我区某中学体育组因高中教学需要本学期购进篮球和排球共80个,共花费5800元,已知篮球的单价是80元/个,排球的单价是50元/个.

(1)篮球和排球各购进了多少个(列方程组解答)?

(2)因该中学秋季开学准备为初中也购买篮球和排球,教学资源实现共享,体育组提出还需购进同样的篮球和排球共40个,但学校要求花费不能超过2810元,那么篮球最多能购进多少个(列不等式解答)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

同步练习册答案