精英家教网 > 初中数学 > 题目详情

【题目】如图1,抛物线轴交于点、点,与轴交于点,顶点的横坐标为,对称轴交轴交于点,交与点 .

1)求顶点的坐标;

2)如图2所示,过点的直线交直线于点,交抛物线于点.

①若直线分成的两部分面积之比为,求点的坐标;

②若,求点的坐标.

【答案】1;(2;(3的坐标为

【解析】

1)将点A坐标代入函数关系式可得ab 的方程,再根据顶点的横坐标为可得另一个关于ab的方程,联立方程组求解即可得到ab的值,进而求得抛物线的函数关系式,再将顶点的横坐标代入即可求得点D坐标;

2如图,取得三等分点,过点分别作x轴,y轴的平行线分别交DEx轴于点GHPQ,通过证相似三角形可得点M的横纵坐标与点BD的横纵坐标之间的数量关系,进而得解;

3)取线段的中点,连接GM,由中点坐标可得,根据等腰三角形的三线合一可得GM⊥BC,在根据两条直线互相垂直可求得,与联立方程组可求得点M的坐标,再由利用待定系数法可得,最后将联立方程组即可求得点N的坐标.

解:(1)将代入可得

∵顶点的横坐标为

,即

联立①②解得

时,

2)由(1)得

y=0时,x1=-1x2=3

B3,0),即BO=3

如图,取的三等分点,过点分别作x轴,y轴的平行线分别交DEx轴于点GHPQ

则可得△DGM1∽△DHM2∽△DEB,△BQM2∽△BPM1∽△BED,且相似比为1:2:3

同理可得:

∴点的坐标为:

3

取线段的中点,作直线GM

∵点B3,0),点C03

中点G的坐标为

,点G为线段的中点,

∴GM⊥BC

∴设直线GMy=x+m

代入得m=0

设直线BDy=kx+n

坐标代入得k=-2n=6

联立①②可得

设直线MCy=k2x+n2

坐标代入得k2=n2=3

联立可得

的坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°,点DE分别是ABBC的中点,过点CCFAB,与DE的延长线并交于点F,连接BF

1)试判断四边形CDBF的形状,并说明理由;

2)若CD5sinCAB,过点CCHBF,垂足为H点,试求CH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读以下材料,并完成相应任务:

斐波那契(约1170-1250)是意大利数学家.1202年,撰写了《算盘书》一书,他是第一个研究了印度和阿拉伯数学理论的欧洲人,他还曾在埃及、叙利亚、希腊,以及意大利西西里和法国普罗旺斯等地研究数学.他研究了一列非常奇妙的数:01123581321345589144……这列数,被称为斐波那契数列.其特点是从第3项开始,每一项都等于前两项之和,斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.

任务:(1)填写下表并写出通过填表你发现的规律:

2

3

4

5

6

7

8

9

这一项的平方

1

1

4

9

25

________

_______

441

这一项的前、后两项的积

0

2

3

10

24

_______

_______

442

规律:_____________

2)现有长为的铁丝,要截成小段,每段的长度不小于,如果其中任意三小段都不能拼成三角形,则的最大值为___________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形对角线交于点边分别为边长作正方形正方形,连接

1)求证:

2)若,请求出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别为四边形的边的中点,并且图中四个小三角形的面积之和为,即,则图中阴影部分的面积为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应市政府关于“垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B:比较了解;C:了解较少;D:不了解”四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;

______,并补全条形统计图;

若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;

已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB4cm,点EF同时从C点出发,以1cm/s的速度分别沿CBBACDDA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)t(s)的函数关系可用图象表示为( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?

(2)请把条形统计图补充完整;

(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,王老师让同学们对给定的正方形,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:

甲同学:

乙同学:

丙同学:

丁同学:

上述四名同学表示的结果中,四个点的坐标都表示正确的同学是__________

查看答案和解析>>

同步练习册答案