精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+kx+
1
2
k-
7
2

(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;
(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;
(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a-k2+6k-4=0 有大于0且小于3的实数根,求a的整数值.
(1)证明:x2+kx+
1
2
k-
7
2
=0,
1=b2-4ac=k2-4(
1
2
k-
7
2

=k2-2k+14
=k2-2k+1+13
=(k-1)2+13>0,
∴不论k为任何实数,该函数的图象与x轴必有两个交点;

(2)∵二次函数y=x2+kx+
1
2
k-
7
2
的图象与x轴的两个交点在点(1,0)的两侧,且二次函数开口向上,
∴当x=1时,函数值y<0,
即1+k+
1
2
k-
7
2
<0,
解得:k<
5
3

∵关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,
∴k≠0且△2=b2-4ac=(2k+3)2-4k2=4k2+12k+9-4k2=12k+9>0,
∴k>-
3
4
且k≠0,
∴-
3
4
<k<
5
3
且k≠0,
∴k=1;

(3)由(2)可知:k=1,
∴x2+2(a+1)x+2a+1=0,
解得x1=-1,x2=-2a-1,
根据题意,0<-2a-1<3,
∴-2<a<-
1
2

∴a的整数值为-1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案