精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当时,求S的值.
(2)求S关于的函数解析式.
(3)①若S=时,求的值;
②当m>2时,设,猜想k与m的数量关系并证明.
(1);(2);(3)①;②,证明见解析.

试题分析:(1)根据点在曲线上点的坐标与方程的关系,求出点A的坐标,根据△ABE∽△CBO求出CO的长,从而根据轴对称的性质求出DO的长,进而求出△BED的面积S.
(2)分两种情况讨论.
(3)①连接AD,由△BED的面积为求出现,得到点A 的坐标,应用待定系数法,设
得到,从而.
②连接AD,应用待定系数法,设得到,从而得到,因此.
得到,从而
试题解析:(1)∵点A是抛物线上的一个动点,AE⊥y轴于点E,且
∴点A的坐标为. ∴当时,点A的坐标为.
∵点B的坐标为,∴BE=OE=1.
∵AE⊥y轴,∴AE∥x轴. ∴△ABE∽△CBO.∴,即,解得.
∵点D与点C关于y轴对称,∴.
.
(2)①当时,如图,
∵点D与点C关于y轴对称,∴△DBO≌△CBO.
∵△ABE∽△CBO,∴△ABE∽△DBO .∴.∴
.

②当时,如图,同①可得

综上所述,S关于的函数解析式.
(3)①如图,连接AD,
∵△BED的面积为,∴.∴点A 的坐标为.
,∴.
.
.

②k与m的数量关系为,证明如下:
连接AD,则
,∴.
.
∵点A 的坐标为,∴.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧)点
A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,若抛物线Y=X2  改为抛物线Y= X2+BX+C 其他条件不变  求矩形ABCD的面积

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个开口向下,对称轴为直线的抛物线的解析式,y=                 .?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1).
(1)a=   
(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;
(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x²+bx+c与直线y=x-1交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.
(1)求证:△APQ∽△CDQ;
(2)P点从A点出发沿AB边以每秒1个单位的速度向B点移动,移动时间为t秒.
①当t为何值时,DP⊥AC?
②设,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是(  )。
A.①②B.③④C.①④D.①③

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知的图象如图所示,其对称轴为直线x=-1,与x轴的一个交点为(1,0),与y轴的交点在(0,2)与(0,3)之间(不包含端点),则下列结论正确的是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案