精英家教网 > 初中数学 > 题目详情
如图,已知直线EF分别交直线ABCDEFABCDFH平分ÐEFDGF^FHÐAEF=68°,求ÐGFE的度数.

 

 

答案:
解析:

ABCD(已知)∴ ÐAEF=ÐEFD(平行线的内错角相等)

ÐAEF=68°(已知)∴ ÐEFD=68°(等量代换)

FH平分ÐEFD(已知)∴ ÐEFH=ÐEFD=34°

GF^FH(已知)∴ ÐGFD=90°(垂直定义)

ÐGFE=ÐGFD-ÐEFH(两角的差定义)∴ ÐGFE=90°-34°=56°

 

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知点M,N的坐标分别是M (0,-4),N(4,-4),点A是线段MN上一动点,以A为顶点的抛物线y=a(x-h)2+k和y轴交于点E,和直线x=4交于点F,和直线x=2交于点C,这精英家教网里a>0,且a为常数.直线EF和抛物线的对称轴交于点B,和直线x=2交于点D.
(1)写出k的值;
(2)求直线EF的函数表达式(表达式中可以含有a,h);
(3)比较线段BA和CD的长短.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H不在同一条直线上.
求证:EF和GH互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荆州)如图,已知:如图①,直线y=-
3
x+
3
与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线y=a(x-k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和
3
个单位长度/秒,运动时间为t秒.
(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:
①作点A关于直线l的对称点A′.
②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:
(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.
①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)
②请直接写出△PDE周长的最小值
8
8

(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值
6+3
10
6+3
10

查看答案和解析>>

同步练习册答案