精英家教网 > 初中数学 > 题目详情
△ABC中,AB=AC,AB边的中垂线与直线AC所成的角为50°,则∠B等于(  )
A、70°
B、20°或70°
C、40°或70°
D、40°或20°
考点:线段垂直平分线的性质,等腰三角形的性质
专题:分类讨论
分析:由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情况进行讨论.
解答:解:如图①,当AB的中垂线与线段AC相交时,则可得∠ADE=50°,
∵∠AED=90°,
∴∠A=90°-50°=40°,
∵AB=AC,
∴∠B=∠C=
180°-∠A
2
=70°;
如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE=50°,
∵∠AED=90°,
∴∠DAE=90°-50°=40°,
∴∠BAC=140°,
∵AB=AC,
∴∠B=∠C=
180°-∠A
2
=20°.
∴底角B为70°或20°.
故选:B.
点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2013年,威海城镇居民人均年收入约为4.6万,4.6万精确到了
 
位.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论是(  )
A、只有①②B、①②③
C、只有②③D、只有①③

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是(  )
A、∠B=∠E,BC=EF
B、∠A=∠D,BC=EF
C、∠A=∠D,∠B=∠E
D、BC=EF,AC=DF

查看答案和解析>>

科目:初中数学 来源: 题型:

某果园2012年水果产量为100吨,2014年水果产量为144吨,则该果园水果产量的年平均增长率为多少?若设该果园水果产量的年平均增长率为x,则根据题意可列方程为(  )
A、144(1-x)2=100
B、100(1-x)2=144
C、144(1+x)2=100
D、100(1+x)2=144

查看答案和解析>>

科目:初中数学 来源: 题型:

已知|x-12|+|z-13|与y2-24y+144互为相反数,则以x、y、z为三边的三角形是
 
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

直线l垂直x轴于点A(4,0),点P是l上的一个动点,经过点P的抛物线y=x2+bx+c与x轴交于原点O和点B,抛物线的对称轴交OP于点C,交x轴于点D,连接PD、PB、BC,设点P的纵坐标为m.
(1)求当点P与点A重合时抛物线的解析式;
(2)若△PAD的面积是△PAB的2倍,求点B的坐标;
(3)是否存在点P,使△PBC为直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,∠MON=90°,反比例函数y=
2
x
(x>0)和y=
k
x
(k<0,x<0)的图象分别是l1和l2.射线OM交l1于点A(1,a),射线ON交l2于点B,连接AB交y轴于点P,AB∥x轴.
(1)求k的值;
(2)如图②,将∠MON绕点O旋转,射线OM始终在第一象限,交l1于点C,射线ON交l2于点D,连接CD交y轴于点Q,在旋转的过程中,∠OCD的大小是否发生变化?若不变化,求出tan∠OCD的值;若变化,请说明理由;
(3)在(2)的旋转过程中,当点Q为CD中点时,CD所在的直线与l1的有几个公共点,求出公共点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知OA=4cm,一个动点P从A向O以1cm/秒的速度运动,以O为圆心,分别以OA、OP为半径画大圆和小圆,以P为切点的小圆的切线与大圆交于C、D,则弦CD的长y(cm)关于P的运动时间t(秒)的函数解析式为
 

查看答案和解析>>

同步练习册答案