19£®ÒÑÖªÅ×ÎïÏßy=ax2+bx-4ÓëxÖá½»ÓÚA£¬BÁ½µã£¬£¨µãBÔÚµãAµÄ×ó²à£©ÇÒA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©¡¢£¨8£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬Á¬½ÓBC£¬ÒÔBCΪһ±ß£¬µãOΪ¶Ô³ÆÖÐÐÄ×÷ÁâÐÎBDEC£¬µãPÊÇxÖáÉϵÄÒ»¸ö¶¯µã£¬ÉèµãPµÄ×ø±êΪ£¨m£¬0£©£¬¹ýµãP×÷xÖáµÄ´¹ÏßL½»Å×ÎïÏßÓÚµãQ£¬½»BDÓÚµãM£®

£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãPÔÚÏ߶ÎOBÉÏÔ˶¯Ê±£¬ÊÔ̽¾¿mΪºÎֵʱ£¬ËıßÐÎCQMDÊÇƽÐÐËıßÐΣ¿
£¨3£©ÔÚ£¨2£©µÄ½áÂÛÏ£¬ÊÔÎÊÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãN£¨²»Í¬ÓÚµãQ£©£¬Ê¹Èý½ÇÐÎBCNµÄÃæ»ýµÈÓÚÈý½ÇÐÎBCQµÄÃæ»ý£¿Èô´æÔÚ£¬ÇëÇó³öµãNµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨¼´¿ÉÇóµÃ£®
£¨2£©ÓÉÁâÐεĶԳÆÐÔ¿ÉÖª£¬µãDµÄ×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÖ±ÏßBDµÄ½âÎöʽ£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖʿɵùØÓÚmµÄ·½³Ì£¬ÇóµÃmµÄÖµ£»ÔÙ¸ù¾ÝƽÐÐËıßÐεÄÅж¨¿ÉµÃËıßÐÎCQMDµÄÐÎ×´£»
£¨3£©ÒªÊ¹Èý½ÇÐÎBCNµÄÃæ»ýµÈÓÚÈý½ÇÐÎBCQµÄÃæ»ý£¬¿ÉÅжÏËıßÐÎCQBNÊÇƽÐÐËıßÐΣ¬½âµÃ´ËʱµãNµÄ×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2+bx-4ÓëxÖá½»ÓÚA£¨-2£¬0£©£¬B£¨8£¬0£©Á½µã£¬
¡à$\left\{\begin{array}{l}{0=4a-2b-4}\\{0=64a+8b-4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{4}}\\{b=-\frac{3}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=$\frac{1}{4}$x2-$\frac{3}{2}$x-4£»
£¨2£©¡ßC£¨0£¬-4£©
¡àÓÉÁâÐεĶԳÆÐÔ¿ÉÖª£¬µãDµÄ×ø±êΪ£¨0£¬4£©£®
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+b£¬Ôò$\left\{\begin{array}{l}{b=4}\\{8k+b=0}\end{array}\right.$£¬
½âµÃk=-$\frac{1}{2}$£¬b=4£®
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-$\frac{1}{2}$x+4£®
¡ßl¡ÍxÖᣬ
¡àµãMµÄ×ø±êΪ£¨m£¬-$\frac{1}{2}$m+4£©£¬µãQµÄ×ø±êΪ£¨m£¬$\frac{1}{4}$m2-$\frac{3}{2}$m-4£©£®
Èçͼ£¬µ±MQ=DCʱ£¬ËıßÐÎCQMDÊÇƽÐÐËıßÐΣ¬
¡à£¨-$\frac{1}{2}$m+4£©-£¨ $\frac{1}{4}$m2-$\frac{3}{2}$m-4£©=4-£¨-4£©£®
»¯¼òµÃ£ºm2-4m=0£¬
½âµÃm1=0£¨²»ºÏÌâÒâÉáÈ¥£©£¬m2=4£®
¡àµ±m=4ʱ£¬ËıßÐÎCQMDÊÇƽÐÐËıßÐΣ»
£¨3£©ÒªÊ¹Èý½ÇÐÎBCNµÄÃæ»ýµÈÓÚÈý½ÇÐÎBCQµÄÃæ»ý£¬
Nµãµ½BCµÄ¾àÀëÓëQµ½BCµÄ¾àÀëÏàµÈ£»ËùÒÔ¹ýM»òQµãµÄбÂÊΪ$\frac{1}{2}$µÄ Ö±ÏßÓëÅ×ÎïÏߵĽ»µã¼´ÎªËùÇó
M£¨4£¬2£©£¬Q£¨4£¬-6£©
ÉèÖ±Ïßl£ºy=$\frac{1}{2}$x+b
¢Ùµ±Ö±Ïßl¹ýQµãʱ£¬
¿ÉÇól£ºy=$\frac{1}{2}$x-8
ÁªÁ¢Å×ÎïÏß·½³Ì£¬$\frac{1}{4}$x2-$\frac{3}{2}$x-4=$\frac{1}{2}$x-8£»½âµÃx1=x2=4£¨ÓëQÖغϣ¬ÉáÈ¥£©
¢Úµ±Ö±Ïß¹ýMµãʱ£¬¿ÉÇó£¬
l£ºy=$\frac{1}{2}x$£¬
ÁªÁ¢Å×ÎïÏß·½³Ì£¬$\frac{1}{4}$x2-$\frac{3}{2}$x-4=$\frac{1}{2}$x£»½âµÃx1=4+$4\sqrt{2}$£¬x2=4-$4\sqrt{2}$£¬´úÈëÖ±Ïß·½³Ì£¬ÇóµÃ
N1£¨4+4$\sqrt{2}$£¬2+2$\sqrt{2}$£©£¬N2£¨4-4$\sqrt{2}$£¬2-2$\sqrt{2}$£©£¬
¹Ê·ûºÏÌõ¼þµÄNµÄ×ø±êΪN1£¨4+4$\sqrt{2}$£¬2+2$\sqrt{2}$£©£¬N2£¨4-4$\sqrt{2}$£¬2-2$\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÐÔ£¬Éæ¼°µÄ֪ʶµãÓУº×ø±êÖáÉϵãµÄÌص㣬ÁâÐεĶԳÆÐÔ£¬´ý¶¨ÏµÊý·¨ÇóÖ±ÏߵĽâÎöʽ£¬Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ£¬·½³Ì˼ÏëºÍ·ÖÀà˼ÏëµÄÔËÓã¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®·´±ÈÀýº¯Êýy=$\frac{2m-1}{x}$ÔÚx=2´¦×Ô±äÁ¿Ôö¼Ó1£¬º¯ÊýÖµÏàÓ¦Ôö¼Ó$\frac{1}{2}$£¬Ôòm=-$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¹ØÓÚÒ»Ôª¶þ´Î·½³Ìx2+£¨4k+1£©x+2k-1=0£¬Ëµ·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ò»¶¨ÓÐÁ½¸öÏàµÈµÄʵÊý¸ùB£®Ò»¶¨ÓÐʵÊý¸ù
C£®Ò»¶¨ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ùD£®Ò»¶¨Ã»ÓÐʵÊý¸ù

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¡÷ABCºÍµãS¶¼ÔÚÕý·½ÐÎÍø¸ñµÄ¸ñµãÉÏ£¬Ã¿¸öСÕý·½Ðεı߳¤Îª1£®
£¨1£©½«¡÷ABCÈƵãS°´Ë³Ê±Õë·½ÏòÐýת90¡ã£¬»­³öÐýתºóµÄͼÐΡ÷A1B1C1£»
£¨2£©Çó»¡BB1µÄ³¤£»
£¨3£©ÇëÇó³ö¡÷ABCÐýתµ½¡÷A1B1C1ɨ¹ýµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª¶þ´Îº¯Êýy=kx2-4kx+3k£¨k¡Ù0£©
£¨1£©µ±k=1ʱ£¬Çó¸ÃÅ×ÎïÏßÓë×ø±êÖáµÄ½»µãµÄ×ø±ê£»
£¨2£©µ±0¡Üx¡Ü3ʱ£¬ÇóyµÄ×î´óÖµ£»
£¨3£©ÈôÖ±Ïßy=2kÓë¶þ´Îº¯ÊýµÄͼÏó½»ÓÚE¡¢FÁ½µã£¬ÎÊÏ߶ÎEFµÄ³¤¶ÈÊÇ·ñÊǶ¨Öµ£¿Èç¹ûÊÇ£¬Çó³öÆ䳤¶È£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁи÷ʽÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{£¨-2£©^{2}}$=-2B£®£¨-$\sqrt{3}$£©2=9C£®$\root{3}{-9}$=-3D£®¡À$\sqrt{9}$=¡À3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èô$\sqrt{x+5}$ÓÐÒâÒ壬Ôò×ÖĸxµÄÈ¡Öµ·¶Î§ÊÇx¡Ý-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁв»µÈʽ×éµÄ½â¼¯£¬ÔÚÊýÖáÉϱíʾΪÈçͼËùʾµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x-1£¾0}\\{x+2¡Ü0}\end{array}\right.$B£®$\left\{\begin{array}{l}{x+1£¾0}\\{x-2¡Ü0}\end{array}\right.$C£®$\left\{\begin{array}{l}{x+1¡Ý0}\\{x-2£¼0}\end{array}\right.$D£®$\left\{\begin{array}{l}{x-1¡Ü0}\\{x+2£¼0}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÖØÇìÊÐÍ­ÁºÇøÕþ¸®Îª×ö´óÏç´åÂÃÓΣ¬´òÔìÁË¡°Îå¶ä½ð»¨¡±£¬ÆäÖÐÎ÷±ßA´¦ÓС°ÍòĶÉú̬ʪµØºÉ»¨Ô°¡±£¬¶«±ßB´¦ÓС°É³ÐÄõ¹åÔ°¡±£¬ÎªÁËÂäʵÕâÒ»¾Ù´ë£¬ÇøÕþ¸®¼Æ»®ÔÚA¡¢BÁ½ÂÃÓξ°µãÖ®¼äÐÞ½¨Ò»Ìõ¹«Â·AB£¬ÒÑÖª¹«Â·ABµÄÒ»²àÓС°Ëļ¾»¨º£¡±¾°µãC£¬ÔÚ¹«Â·ABÉϵÄM´¦²âµÃ¾°µãCÔÚMµÄ±±Æ«¶«53¡ã·½ÏòÉÏ£¬´ÓMÏò¶«×ß300Ã×µ½´ïN´¦£¬²âµÃ¾°µãCÔÚNµÄ¶«±±·½ÏòÉÏ£¬ÇÒ¾°µãCÖÜΧ800Ã×·¶Î§ÄÚΪ¡°Ëļ¾»¨º£¡±£®
£¨1£©ÎªÁ˱£»¤¡°Ëļ¾»¨º£¡±²»±»ÐÞ½¨¹«Â·ÆÆ»µ£¬ÄÇôÐÞ½¨µÄ¹«Â·ABÊÇ·ñÐèÒª¸ÄÔ죿Çë˵Ã÷ÀíÓÉ£®
£¨2£©ÇóµãMµ½¾°µãCµÄ¾àÀëÊǶàÉÙÃ×£¿£¨²Î¿¼Êý¾Ý£ºsin37¡ã¡Ö0.60£¬cos37¡ã¡Ö0.80£¬tan37¡ã¡Ö0.75£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸