解:(1)将A代入双曲线y=
中,可得a=
,
故a=4,A(3,4);
由于A、B关于原点对称,那么B(-3,-4).
(2)∵A(3,4),B(-3,-4),则AB间的横向距离、纵向距离分别为6、8个单位,
∴由题意可得:?AA
1B
1B的面积为48,
又∵?AA
1B
1B与?A
1A
2B
2B
1的面积相等,
∴第二次线段A
1B
1进一步在纵向平移了8个单位.
故:AA
1=6,A
1A
2=8
可知,第二次在平移的方向上可能向上,也可能向下.
∴①当线段向上平移时:A(3,4)→A
1(9,4)→A
2(9,12);
②当线段向下平移时:A(3,4)→A
1(9,4)→A
2(9,-4).
所以A
2的坐标为:(9,12)或(9,-4)
又∵OK=3,KB=4,
∴
=
=
,
而∠OKB=∠AA
1A
2=90°,
故:△AA
1A
2∽△OBK.
(3)由题意可知:将抛物线y=
(x-6)
2-6向右平移3个单位,再向上平移4个单位,得:
A点满足的解析式为:y=
(x-9)
2-2.
(4)∵AB=10且使线段AB按如图所示方向滑过的面积为24个平方单位,M在直线x=6的左侧,
∴AB在平移前后的平行距离为
;
过A(3,4)点作AT⊥x轴于T,又可得T点到平移前线段AB的距离为
;
∴平移后AB直线与x轴的交点必为T(3,0).
又可知平移后AB直线解析式为:y=
x-4,此时M为抛物线:y=
(x-6)
2-6与直线:y=
x-4的交点,
∴解方程:
(x-6)
2-6=
x-4,
得:x=10±2
,
又∵0<x<6,
∴x=10-2
,
故M的横坐标为10-2
.
分析:(1)将A点坐标代入反比例函数的解析式中,即可求得a的值,而A、B关于原点对称,由此求出B点的坐标.
(2)根据A、B的坐标知:A、B的横向、纵向距离分别为6、8,若线段AB向x轴正方向移动6个单位,那么它的面积应该是6×8=48,由于?AA
1B
1B与?A
1A
2B
2B
1的面积相等,而A、B的横距离为6,那么第二次平移的距离必为8个单位,然后分向上、向下平移两种情况分类讨论即可得到点A
2的坐标;
在求△AA
1A
2与△OBK是否相似,已知∠OKB=∠AA
1A
2=90°,只需比较两组直角边是否对应成比例即可.
(3)已知了M、A的横、纵坐标的差分别为3、4,因此将过M的抛物线向右平移3个单位后,再向上平移4个单位,即可得到所求的抛物线解析式.
(4)易知AB=10,若平移后扫过的面积为24,那么线段AB平行移动的距离为
,过A作x轴的垂线,设垂足为T,则T到AB的距离为
,也就是说点T在平移后的直线AB上(即平移后的直线AB与x轴的交点),易求得直线AB的斜率,结合点T的坐标,即可得到平移后直线AB的解析式,联立抛物线的解析式可求得M点的横坐标.
点评:此题是反比例函数和二次函数的综合题,涉及到函数图象上点的坐标意义、图象的平移变换、图形面积的求法、函数图象的几何变换、函数图象交点坐标的求法等重要知识,难度较大.