精英家教网 > 初中数学 > 题目详情
2.如图,在等边三角形ABC中,P是△ABC的一点,PA=1,PB=$\sqrt{7}$,PC=2$\sqrt{2}$,求∠APB的大小.

分析 将△BCP绕B逆时针旋转60°,点C和A重合,P到P′,连接PP′,得出等边三角形PBP′,求出∠BPP′=60°,推出直角三角形APP′,求出∠APP′,即可求出答案.

解答 解:将△BCP绕B逆时针旋转60°,点C和A重合,P到P′,连接PP′,
∵∠PBP′=60°,BP=BP′,
∴△PBP′是等边三角形,
∴∠BPP′=60°,
∴PP′=PB=$\sqrt{7}$,AP′=PC=2$\sqrt{2}$,PA=1,
∵PP′2+PA2=AP′2
∴∠APP′=90°,
∴∠APB=60°+90°=150°.

点评 本题考查了等边本题考查了旋转的性质,勾股定理的逆定理,解此题的关键是正确作辅助线,把PA、PB、PC放在“一个三角形”中,主要考查学生的思维能力和运用性质进行推理的能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.若一个直角三角形三条边长都是正整数,且一条直角边与斜边的和为25,试求出这个直角三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,A(0,3),B(3,0),过B作直线BC⊥x轴,一个动点N自OA的中点M出发,沿直线先到达x轴上的E点,再到直线BC上的F点,最后到达点A.
(1)求多边形AMEF面积的最小值;
(2)求使N点运动的总路径最短的E点、F点的坐标,并求出这个最短的总路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.数学问题:计算$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$*(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数字问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$,最后空白部分的面积是$\frac{1}{{2}^{n}}$.
根据第n次分割图可得等式:$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.

探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}+\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$\

探究三:计算$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:根据前面探究结果:
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$.

推出:$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.(只填空,其中m、n都是正整数,且m≥2,n≥1)
拓广应用:计算$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+…+\frac{{5}^{n}-1}{{5}^{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任一点,试比较PB+PC与AB+AC的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读下列材料:
在数学综合实践课上,某小组探究了这样一个问题:已知x-y=3,且x>4,y<3,试确定x+y的取值范围.他们是这样解答的:
解:∵x-y=3,
∴x=y+3,
又∵x>4,
∴y+3>4,
∴y>1,
又∵y<3,
∴1<y<3…①,
同理可得:4<x<6…②,
由①+②得4+1<x+y<3+6
∴x+y的取值范围是5<x+y<9.
请仿照上述方法,解决下列问题:已知x+y=2,且x>1,y>-4,试确定x-y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:当x=-3和x=2时,代数式kx+b的值分别是-4和11.
(1)求k和b的值;
(2)当x取何值时,代数式kx+b的值比$\frac{1}{2}$(kx-b)的值小?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算$\frac{({3}^{4}+4)({7}^{4}+4)(1{1}^{4}+4)}{({1}^{4}+4)({5}^{4}+4)({9}^{4}+4)}$=145.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在△ABC中,∠C=90°,AC=3cm,BC=4cm.
(1)求这个三角形的斜边AB的长和斜边上的高CD的长;
(2)求斜边被分成的两部分AD和BD的长.

查看答案和解析>>

同步练习册答案