精英家教网 > 初中数学 > 题目详情

【题目】【探索发现】

如图,是一张直角三角形纸片,∠B=90°小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DEEF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为   

【拓展应用】

如图,在△ABC中,BC=aBC边上的高AD=h,矩形PQMN的顶点PN分别在边ABAC上,顶点QM在边BC上,则矩形PQMN面积的最大值为   .(用含ah的代数式表示)

【灵活应用】

如图,有一块缺角矩形”ABCDEAB=32BC=40AE=20CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.

【实际应用】

如图,现有一块四边形的木板余料ABCD,经测量AB=50cmBC=108cmCD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点MN在边BC上且面积最大的矩形PQMN,求该矩形的面积.

【答案】详见解析.

【解析】试题解分析:【探索发现】:由中位线知EF=BCED=AB、由可得;

【拓展应用】:由APN∽△ABC,可得PN=a-PQ,设PQ=x,由S矩形PQMN=PQPN═-x-2+,据此可得;

【灵活应用】:添加如图1辅助线,取BF中点IFG的中点K,由矩形性质知AE=EH=20CD=DH=16,分别证AEF≌△HEDCDG≌△HDEAF=DH=16CG=HE=20,从而判断出中位线IK的两端点在线段ABDE上,利用【探索发现】结论解答即可;

【实际应用】:延长BACD交于点E,过点EEHBC于点H,由tanB=tanCEB=ECBH=CH=54EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段ABCD上,利用【拓展应用】结论解答可得.

试题解析:【探索发现】

EFEDABC中位线,

EDABEFBCEF=BCED=AB

又∠B=90°

∴四边形FEDB是矩形,

【拓展应用】

PNBC

∴△APN∽△ABC

,即

PN=a-PQ

PQ=x

S矩形PQMN=PQPN=xa-x=-x2+ax=-x-2+

∴当PQ=时,S矩形PQMN最大值为.

【灵活应用】

如图1,延长BADE交于点F,延长BCED交于点G,延长AECD交于点H,取BF中点IFG的中点K

由题意知四边形ABCH是矩形,

AB=32BC=40AE=20CD=16

EH=20DH=16

AE=EHCD=DH

AEFHED中,

∴△AEF≌△HEDASA),

AF=DH=16

同理CDG≌△HDE

CG=HE=20

BI==24

BI=2432

∴中位线IK的两端点在线段ABDE上,

过点KKLBC于点L

由【探索发现】知矩形的最大面积为×BGBF=×40+20×32+16=720

答:该矩形的面积为720

【实际应用】

如图2,延长BACD交于点E,过点EEHBC于点H

tanB=tanC=

∴∠B=C

EB=EC

BC=108cm,且EHBC

BH=CH=BC=54cm

tanB==

EH=BH=×54=72cm

RtBHE中,BE==90cm

AB=50cm

AE=40cm

BE的中点Q在线段AB上,

CD=60cm

ED=30cm

CE的中点P在线段CD上,

∴中位线PQ的两端点在线段ABCD上,

由【拓展应用】知,矩形PQMN的最大面积为BCEH=1944cm2

答:该矩形的面积为1944cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴于A,B两点,并经过点C,已知点A的坐标是(﹣6,0),点C的坐标是(﹣8,﹣6).

(1)求抛物线的解析式;

(2)求抛物线的顶点坐标及点B的坐标;

(3)设抛物线的对称轴与x轴交于点D,连接CD,并延长CD交抛物线于点E,连接AC,AE,求ACE的面积;

(4)抛物线上有一个动点M,与A,B两点构成ABM,是否存在SADM=SACD?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD80cmAB40cm,半径为8cm的⊙O在矩形内且与ABAD均相切.现有动点PA点出发,在矩形边上沿着ABCD的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了(  )cm

A.56B.72C.5672D.不存在

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点E对角线BD上,且∠BAE=22.5°EFAB,垂足为点F,则EF的长为(

A. 1B. 4-C. D. -4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:a是最大的负整数,b是最小的正整数,且ca+b,请回答下列问题:

1)请直接写出abc的值:a   b   c   

2abc在数轴上所对应的点分别为ABC,请在如图的数轴上表示出ABC三点;

3)在(2)的情况下.点ABC开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:ABBC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出ABBC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.

(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是

(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点DE分别是△ABCBCAC边的中点.

(1)如图①,若AB=10,求DE的长;

(2)如图②,FAB边上的一点,FG//AD,ED的延长线于点G.求证:AF=DG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家需要用钢管做防盗窗,按设计要求,其中需要长为 0.8m2.5m 且粗细相同的钢管分别为 100 根,32 根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为 6m

1)试问一根 6m 长的圆钢管有哪些裁剪方法呢?请填写下空(余料作废).

方法①:当只裁剪长为 0.8m 的用料时,最多可剪 根;

方法②:当先剪下 1 2.5m 的用料时,余下部分最多能剪 0.8m 长的用料 根;

方法③:当先剪下 2 2.5m 的用料时,余下部分最多能剪 0.8m 长的用料 根.

2)分别用(1)中的方法②和方法③各裁剪多少根 6m 长的钢管,才能刚好得到所需要的相应数量的材料?

3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要 6m 长的钢管与(2 中根数相同?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,杭州某化工厂与AB两地有公路,铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.4/(吨千米),铁路运价为1.1/(吨千米),且这两次运输共支出公路运输费14000元,铁路运输费89100元,求:

1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?

2)这批产品的销售款比原料费与运输费的和多多少元?

查看答案和解析>>

同步练习册答案