精英家教网 > 初中数学 > 题目详情

【题目】在数学课上,爱动脑筋的小孙同学提出了一个问题:已知线段AB和直线L,他想作一个顶点P在直线上L的特殊的,使得

经过课堂讨论,有的学习小组提出了如下尺规作图方案:

分别以点A,点B为圆心,以线段AB的长度为半径画弧,两条弧在线段AB上方相交于点O

O为圆心,OA为半径作弧,与直线L相交于两点;

连接

所以就是所求的角

请你根据上述尺规作图方案,完成下列问题:

使用直尺和圆规补全图形;保留作图痕迹

完成下面的证明:

证明:在中,连接OAOB

为等边三角形______填推理的依据

______填推理的依据

【答案】(1)见解析;(2)三边相等的三角形是等边三角形;同弧所对圆周角等于它所对圆心角的一半.

【解析】

根据作图步骤依次作图即可得;

根据等边三角形的判定与圆周角定理求解可得.

解:(1)如图所示,就是所求的角.


(2)在中,连接OA,OB,
为等边三角形(三边相等的三角形是等边三角形),

(同弧所对圆周角等于它所对圆心角的一半),
故答案为:三边相等的三角形是等边三角形,同弧所对圆周角等于它所对圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h20t5t2

1)小球飞行时间是多少时,小球最高?最大高度是多少?

2)小球飞行时间t在什么范围时,飞行高度不低于15m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)

(1)求这两个函数解析式;

(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,下面说法正确的个数是(  )个.

①若OABC的外心,∠A50°,则∠BOC100°

②若OABC的内心,∠A50°,则∠BOC115°

③若BC6AB+AC10,则ABC的面积的最大值是12

ABC的面积是12,周长是16,则其内切圆的半径是1

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列判断正确的是  

A. 打开电视机,正在播NBA篮球赛是必然事件

B. 掷一枚硬币正面朝上的概率是表示毎抛掷硬币2次就必有1次反面朝上

C. 一组数据234556的众数和中位数都是5

D. 甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠BAC=90°,过点B的直线MNAC,DBC边上一点,连接AD,作DEADMN于点E,连接AE.

(1)如图①,当∠ABC=45°时,求证:AD=DE;理由;

(2)如图②,当∠ABC=30°时,线段ADDE有何数量关系?并请说明理由;

(3)当∠ABC=α时,请直接写出线段ADDE的数量关系.(用含α的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中

(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;

(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.

①依题意将图2补全;

②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:要证明PA=PM,只需证△APM是等边三角形;

想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;

想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…

请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某天然气公司的主输气管道从A市的北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市的北偏东30°方向,测绘员沿主输气管道步行1000米到达C处,测得小区M位于点C的北偏西75°方向,试在主输气管道AC上寻找支管道连接点N,使其到该小区铺设的管道最短,并求AN的长.(精确到1米,≈1.414,≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+cc0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M

1)求二次函数的解析式;

2)点P为线段BM上的一个动点,过点Px轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;

3)探索:线段BM上是否存在点N,使NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案