【题目】在△ABC中,BD,CE分别是∠ABC,∠ACB平分线,BD,CE相交于点P.
(1)如图1,如果∠A=60°,∠ACB=90°,则∠BPC= ;
(2)如图2,如果∠A=60°,∠ACB不是直角,请问在(1)中所得的结论是否仍然成立?若成立,请证明:若不成立,请说明理由.
(3)小月同学在完成(2)之后,发现CD、BE、BC三者之间存在着一定的数量关系,于是她在边CB上截取了CF=CD,连接PF,可证△CDP≌△CFP,请你写出小月同学发现,并完成她的说理过程.
【答案】(1) 120°; (2) 成立 (3) BC=CD+BE
【解析】
(1)先根据三角形内角和定理求出∠ABC=30,再用角平分线的意义求出∠PCB=45°,∠PBC=15°,最后用三角形的内角和定理即可得出结论;
(2)先根据角平分线的意义,求出∠ACB=2∠PCB,∠ABC=2∠PBC,再根据三角形的内角和定理求出∠ABC+∠ACB=120°,最后用三角形内角和定理即可得出结论;
(3)先判断出△DCP≌△FCP(SAS),得出CD=CF,∠DPC=∠FPC=60°,进而判断出∠PBF=∠PBE,即可判断出△FPB≌△EPB,最后用等量代换即可得出结论.
解:(1)∵∠A=60°,∠ACB=90°,根据三角形内角和定理得,∠ABC=180°﹣60°﹣90°=30°,
∵BD,CE分别是∠ABC,∠ACB平分线,
∴∠PCB=∠ACB=45°,∠PBC=∠PBC=15°,
在△PBC中,根据三角形的内角和定理得,∠BPC=180°﹣∠PCB﹣∠PBC=180°﹣45°﹣15°=120°,
(2)结论仍然成立,
理由:∵BD,CE分别是∠ABC,∠ACB平分线,
∴∠ACB=2∠PCB,∠ABC=2∠PBC,
∵∠A=60°,
在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°﹣∠A=120°,
∴2∠PCB+2∠PBC=120°,
∴∠PCB+∠PBC=60°,
在△PBC中,∠BPC+∠PCB+∠PBC=180°,
∴∠BPC=180°﹣(∠PCB+∠PBC)=180°﹣60°=120°
(3)BC=CD+BE,理由:如图2,
由(2)知,∠BPC=120°,
∴∠DPC=∠EPB=60°,在边CB上截取了CF=CD,连接PF,
∵CE是∠ACB的平分线,
∴∠DCP=∠FCP,
在△DCP和△FCP中,
,
∴△DCP≌△FCP(SAS),
∴CD=CF,∠DPC=∠FPC=60°,
∴∠BPC=∠BPC﹣∠FPC=60°=∠EPB,
∵BD是∠ABC的平分线,
∴∠PBF=∠PBE,
在△FPB和△EPB中,
,
∴△FPB≌△EPB,BF=BE,
∴BC=CF+BF=CD+BE.
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数y=+x的图象与性质.
小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数y=+x的自变量x的取值范围是;
(2)下表是y与x的几组对应值.
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣+bx+c的图象分别交于B,C两点,点B在第一象限.
(1)求二次函数y=﹣+bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两块等腰直角三角形纸片AOB和COD按图①所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图②所示.
(1)在图②中,求证:AC=BD,且AC⊥BD;
(2)当BD与CD在同一直线上(如图③)时,若AC=7,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,求△BCD的周长为;
(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);
②在图3中补全图形,求∠EOF的度数;
③若 , 求的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E、F、G、H分别是矩形四边AB、BC、CD、DA的中点,且四边形EFGH的周长为16cm,则矩形ABCD的对角线长等于________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移2个单位长度,再向右平移1个单位长度后得到△A1B1C1,请画出△A1B1C1,并写出点A1,B1,C1的坐标;
(2)求△A1B1C1的面积;
(3)点P在坐标轴上,且△A1B1P的面积是2,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.
(1)求证:四边形BCED是平行四边形;
(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com