精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2-
1
3
x+2
与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).
(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN-CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.
(1)∵抛物线y=ax2-
1
3
x+2经过点B(3,0),
∴9a-
1
3
×3+2=0,
解得a=-
1
9

∴y=-
1
9
x2-
1
3
x+2,
∵y=-
1
9
x2-
1
3
x+2=-
1
9
(x2+3x)+2=-
1
9
(x+
3
2
2+
9
4

∴顶点坐标为(-
3
2
9
4
);

(2)∵抛物线y=-
1
9
x2-
1
3
x+2的对称轴为直线x=-
3
2

与x轴交于点A和点B,点B的坐标为(3,0),
∴点A的坐标为(-6,0).
又∵当x=0时,y=2,
∴C点坐标为(0,2).
设直线AC的解析式为y=kx+b,
-6k+b=0
b=2
,解得
k=
1
3
b=2

∴直线AC的解析式为y=
1
3
x+2.
∵S△AMC=S△ABC
∴点B与点M到AC的距离相等,
又∵点B与点M都在AC的下方,
∴BMAC,
设直线BM的解析式为y=
1
3
x+n,
将点B(3,0)代入,得
1
3
×3+n=0,
解得n=-1,
∴直线BM的解析式为y=
1
3
x-1.
y=
1
3
x-1
y=-
1
9
x2-
1
3
x+2
,解得
x1=-9
y1=-4
x2=3
y2=0

∴M点的坐标是(-9,-4);

(3)在抛物线对称轴上存在一点N,能够使d=|AN-CN|的值最大.理由如下:
∵抛物线y=-
1
9
x2-
1
3
x+2与x轴交于点A和点B,
∴点A和点B关于抛物线的对称轴对称.
连接BC并延长,交直线x=-
3
2
于点N,连接AN,则AN=BN,此时d=|AN-CN|=|BN-CN|=BC最大.
设直线BC的解析式为y=mx+t,将B(3,0),C(0,2)两点的坐标代入,
3m+t=0
t=2
m=-
2
3
t=2

∴直线BC的解析式为y=-
2
3
x+2,
当x=-
3
2
时,y=-
2
3
×(-
3
2
)+2=3,
∴点N的坐标为(-
3
2
,3),d的最大值为BC=
32+22
=
13
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,A、B两点的坐标分别为(-3,0)、(0,3),C点在x轴的正半轴上,且到原点的距离为1.点P、Q分别从A、B两点同时出发,以相同的速度分别向x轴、y轴的正方向作匀速直线运动,直线PQ交直线AB于D.
(1)求经过A、B、C三点的抛物线及直线AB解析式;
(2)设AP的长为m,△PBQ的面积为S,求出S关于m的函数关系式.
(3)作PE⊥AB于E,当P、Q运动时,线段DE的长是否改变?若改变请说明理由,若不改变,请求出DE的长;
(4)有一个以AB为边的,且由两个与△AOB全等的三角形拼结而成的平行四边形ABST,试求出T点的坐标(画出图形,直接写出结果,不需求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于点A、B(A在B的右边),直线y=(m+1)x-3经过点A.若m<1.
(1)求抛物线和直线的解析式;
(2)直线y=kx(k<0)交直线y=(m+1)x-3于点P,交抛物线y=-x2+(m+2)x-3(m-1)于点M,过M点作x轴垂线,垂足为D,交直线y=(m+1)x-3于点N.问:△PMN能否为等腰三角形?若能,求k的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3交x轴于点A(x1,0)、B(-1,0)且x1>0,AO2+BO2=10,抛物线交y轴于点C,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)证明△ADC是直角三角形;
(3)第一象限内,在抛物线上是否存在一点E,使∠ECO=∠ACB?若存在,求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线x=
7
2
的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+c(a≠0)的图象经过点A(1,-1),B(2,5),
(1)求函数y=ax2+c的表达式.
(2)若点C(-2,m),D(n,7)也在函数的图象上,求点C的坐标;点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件售价为x元(x为非负整数),则若要使每星期的利润最大且每星期的销量较大,x应为多少元?(  )
A.41B.42C.42.5D.43

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
))

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;
(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;
(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最
大?

查看答案和解析>>

同步练习册答案