精英家教网 > 初中数学 > 题目详情
11.如图,在平面直角坐标系中,点O为坐标原点,直线y=$\frac{1}{2}$x+3与x轴相交于点 A,与y轴相交于点B,点C为x轴正半轴上一点,点C关于直线AB的对称点D恰好落在y轴正半轴的点D处.
(1)求点C的坐标;
(2)动点P从点B出发,以每秒$\frac{3}{2}$个单位长度的速度沿射线BO匀速运动,同时动点Q从点D出发沿射线DC匀速运动,在运动过程中,Q点始终在P点的上方,连接AP、AQ,且tan∠PAQ=$\frac{1}{2}$,连接PC、PQ,设△PCQ的面积为S,点P的运动时间为t(单位:秒),求S与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,以线段PQ为直径作⊙M,设⊙M与射线DC的另一个交点为N,是否存点P,使$\frac{BD}{QN}$=$\frac{{\sqrt{5}}}{2}$?若存在,求出t值,并判断并直接写出此时直线PQ与x轴的位置关系?若不存在,请说明理由.

分析 (1)如图1中,作BE⊥AD于E,设DE=x,BD=y,由△△ABE≌△ABO,推出OA=AE=6,OB=BE=3,根据勾股定理列出关于x、y的方程组求出x、y即可解决问题.
(2)如图2中,作BF⊥CD于F,PH⊥CD于H.首先证明△DAQ∽△BAP,再分两种情形①点Q在点C上方时.②点Q在点C下方时,如图3中,分别计算即可.
(3)分两种情形讨论①点Q在点C上方时,如图4中,根据PN:DN=1:2,可得$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$:($\sqrt{5}$t+2$\sqrt{5}$)=$\frac{1}{2}$,②点Q在点C下方时,如图5中,根据PN:DN=1:2,列出方程即可解决问题.

解答 解:(1)如图1中,作BE⊥AD于E,设DE=x,BD=y.

在△ABE和△ABO中,
$\left\{\begin{array}{l}{∠AEB=∠AOB=90°}\\{∠EAB=∠BAO}\\{AB=AB}\end{array}\right.$,
∴△△ABE≌△ABO,
∴OA=AE,OB=BE,
∵B(0,3),A(-6,0),
∴AE=AO=6,EB=BO=3,
则有$\left\{\begin{array}{l}{{x}^{2}+{3}^{2}={y}^{2}}\\{{6}^{2}+(3+y)^{2}=(6+x)^{2}}\end{array}\right.$解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,
∴DE=4,
∵AD=AC=10,OA=6,
∴OC=4,
∴点C坐标为(4,0)

(2)如图2中,作BF⊥CD于F,PH⊥CD于H.

∵AD=AC,∠FAD=∠FAC,
∴AF⊥CD,
∴∠DFB=∠AOB=90°,
∵∠ABO=∠DBF,
∴∠BDF=∠BAO=∠BAD,
∵∠ABP=∠ADB+∠BAD=∠ADB+∠BDF=∠ADQ,
由(1)可知tan∠DAB=tan∠BAO=$\frac{1}{2}$,∵tan∠PAQ=$\frac{1}{2}$,
∴∠BAD=∠PAQ,
∴∠DAQ=∠BAP,
∴△DAQ∽△BAP
∴$\frac{AD}{AB}=\frac{DQ}{BP}$,
∴DQ=$\sqrt{5}$t
∵DP=5+$\frac{3}{2}$t,tan∠ODC=$\frac{1}{2}$,
∴PH=.$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$,
①点Q在点C上方时.
∴s=$\frac{1}{2}$PH•QC=$\frac{1}{2}$PH(DC-DQ),
∴s=$\frac{1}{2}$×$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$(4$\sqrt{5}$-$\sqrt{5}$t)=$-\frac{3}{4}{t^2}$+$\frac{1}{2}$t+10(0≤t<4).
②点Q在点C下方时,如图3中,

∴s=$\frac{1}{2}$PH•QC=$\frac{1}{2}$PH(DQ-DC),
∴s=$\frac{1}{2}$×$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$($\sqrt{5}$t-4$\sqrt{5}$)=$\frac{3}{4}{t^2}$-$\frac{1}{2}$t-10(t>4).

(3)∵$\frac{BD}{QN}=\frac{{\sqrt{5}}}{2}$,
∴NQ=2$\sqrt{5}$
∵PQ为直径,
∴∠PNQ=90°,
又∵tan∠ODC=$\frac{1}{2}$,
∴$\frac{PN}{DN}$=$\frac{1}{2}$
①点Q在点C上方时,如图4中,

∵PN:DN=1:2
∴$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$:($\sqrt{5}$t+2$\sqrt{5}$)=$\frac{1}{2}$,
∴t=0,
当t=0时,D、Q重合,PQ⊥x轴.
②点Q在点C下方时,如图5中,

∵PN:DN=1:2,
∴$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$:($\sqrt{5}$t-2$\sqrt{5}$)=$\frac{1}{2}$,
∴t=10,
当t=10时,DP=20,DQ=10$\sqrt{5}$,
∴$\frac{DO}{DP}$=$\frac{2}{5}$,$\frac{DC}{DQ}$=$\frac{4\sqrt{5}}{10\sqrt{5}}$=$\frac{2}{5}$,
∴$\frac{DO}{DP}$=$\frac{DC}{DQ}$
∴PQ∥x轴.

点评 本题考查圆综合题、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用方程的思想思考问题,学会分类讨论,注意不能漏解,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,已知方格纸中有A、B、C三个格点,求作一个以A、B、C为顶点的格点四边形.
(1)在图1中作出的四边形是中心对称图形但不是轴对称图形.
(2)在图2中作出的四边形是轴对称图形但不是中心对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.a与b是两个连续整数,若a<$\sqrt{7}$<b,则a,b分别是(  )
A.6,8B.3,2C.2,3D.3,4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.关于x的一元二次方程ax2+bx=6的一个根为x=2,则代数式4a+2b的值是(  )
A.3B.6C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知2xb-2是关于x的3次单项式,则b的值为(  )
A.5B.4C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算
(+8)+(-17);
(-17)+(-15);
(-32.8)+(+51.76);
(-3.07)+(+3.07);
0+(-5$\frac{2}{3}$);
(-5$\frac{2}{3}$)+(-2.7).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若x1、x2是方程x2+3x-5=0的两个根,则x1•x2的值为(  )
A.-3B.-5C.3D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列函数不是一次函数的是(  )
A.y=$\frac{4}{5}$xB.y=$\frac{4}{5x}$C.y=-x+1D.y=$\frac{1}{2}$(x-3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,一棵大树被台风刮断,若树在离地面6m处折断,树顶端落在离树底部8m处,则树折断之前高(  )
A.15mB.17mC.18mD.16m

查看答案和解析>>

同步练习册答案