精英家教网 > 初中数学 > 题目详情
设ax2+bx+c=0(a≠0)的两根为x1、x2,则有
利用此知识解决:是否存在实数m,使关于x的方程x2+(m+1)x+m+4=0的两根平方和等于2?若存在,求出满足条件的m的值;若不存在,说明理由.
【答案】分析:首先设x1与x2是方程x2+(m+1)x+m+4=0的两根,根据根与系数的关系可得:x1+x2=-(m+1),x1•x2=m+4,又由关于x的方程x2+(m+1)x+m+4=0的两根平方和等于2,则可求得m的值,△≥0,即可求得满足条件的m的值.
解答:解:存在.
∵设x1与x2是方程x2+(m+1)x+m+4=0的两根,
∴x1+x2=-(m+1),x1•x2=m+4,
∵x12+x22=(x1+x22-2x1•x2=[-(m+1)]2-2(m+4)=2,
即m2=9,
解得:m=±3,
∵△=[-(m+1)]2-4(m+4)=m2-2m-15≥0,
∴m=-3.
∴满足条件的m的值为:-3.
点评:此题考查了根与系数的关系与判别式.此题难度适中,注意掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:∵ax2+bx=c=0(a≠0)有两根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
,x1x2=
c
a

利用此知识解决:是否存在实数m,使关于x的方程x2+(m+1)x+m+4=0的两根平方和等于2?若存在,求出满足条件的m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

于是有x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

这是一元二次方程根与系数的关系,我们可以利用它来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=-6,x1x2=-3,则
x
2
1
+
x
2
2
=(x1+x^)2-2x1x2
=(-6)2-2×(-3)=42.
请你根据以上材料解答下列题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)已知x1,x2是方程x2-4x+2=0的两根,求(x1-x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面的材料:
ax2+bx+c=0(a≠0)的根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决问题:
若x2-2x+a=0的有一根为1+
3
,求另一根和a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

利用此知识解决:是否存在实数m,使关于x的方程x2+(m+1)x+m+4=0的两根平方和等于2?若存在,求出满足条件的m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:∵ax2+bx+c=0(a≠0)的根为x1=
-b+
b2-4ac
2a
.,x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上所述得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决下列问题:
(1)若矩形的长和宽是方程4x2-13x+3=0的两个根,则矩形的周长为
13
2
13
2
,面积为
3
4
3
4

(2)若2+
3
是x2-4x+c=0的一个根,求方程的另一个根及c的值.
(3)直角三角形的斜边长是5,另两条直角边的长分别是x的方程:x2+(2m-1)x+m2+3=0的解,求m的值.

查看答案和解析>>

同步练习册答案