19£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=-$\frac{1}{2}$x2+bx+cÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬µãMΪ¶¥µã£¬Á¬½ÓOM£¬ÈôyÓëxµÄ²¿·Ö¶ÔÓ¦ÖµÈç±íËùʾ£º
x¡­-103¡­
y¡­03/20¡­
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Å×ÎïÏßÓëyÖá½»ÓÚµãC£¬µãQÊÇÖ±ÏßBCÏ·½Å×ÎïÏßÉÏÒ»µã£¬µãQµÄºá×ø±êΪxQ£®ÈôS¡÷BCQ¡Ý$\frac{1}{2}$S¡÷BOC£¬ÇóxQµÄÈ¡Öµ·¶Î§£»
£¨3£©Èçͼ2£¬Æ½ÒÆ´ËÅ×ÎïÏßʹÆ䶥µãΪ×ø±êÔ­µã£¬P£¨0£¬-1£©ÎªyÖáÉÏÒ»µã£¬EΪÅ×ÎïÏßÉÏyÖá×ó²àµÄÒ»¸ö¶¯µã£¬´ÓEµã·¢³öµÄ¹âÏßÑØEP·½Ïò¾­¹ýyÖáÉÏ·´ÉäºóÓë´ËÅ×ÎïÏß½»ÓÚÁíÒ»µãF£®Ôòµ±EµãλÖñ仯ʱ£¬Ö±ÏßEFÊÇ·ñ¾­¹ýij¸ö¶¨µã£¿Èç¹ûÊÇ£¬ÇëÇó³ö´Ë¶¨µãµÄ×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÅ×ÎïÏßy=-$\frac{1}{2}$x2+bx+cÓëxÖá½»ÓÚA¡¢BÁ½µã£¬£¨-1£¬0£©£¬£¨3£¬0£©£¬¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Ê×ÏÈÈ¡OBµÄÖеãP£¨$\frac{3}{2}$£¬0£©£¬Á¬½ÓCP£¬È»ºó¹ýµãP×÷PQ¡ÎBC½»Å×ÎïÏßÓÚQ£¬¼´ÎªËùÇó£»Ê×ÏÈÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬È»ºóÓÉƽÐÐÏßµÄÐÔÖÊ£¬ÇóµÃÖ±ÏßPQµÄ½âÎöʽ£¬ÔÙÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{2}x+\frac{3}{4}}\\{y=-\frac{1}{2}{x}^{2}+x+\frac{3}{2}}\end{array}\right.$£¬¼´¿ÉÇóµÃ´ð°¸£»
£¨3£©Ê×Ïȵõ½Æ½ÒƺóµÄÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{1}{2}$x2£¬ÔÙ¹ýµãE×÷EM¡ÍyÖáÓÚM£¬¹ýµãF×÷FN¡ÍyÖáÓÚN£¬Ò×µÃRt¡÷EPM¡×Rt¡÷FPN£¬ÔÙÁªÁ¢$\left\{\begin{array}{l}{y=kx+b}\\{y=-\frac{1}{2}{x}^{2}}\end{array}\right.$£¬¼´¿ÉÇóµÃ´ð°¸£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=-$\frac{1}{2}$x2+bx+cÓëxÖá½»ÓÚA¡¢BÁ½µã£¬£¨-1£¬0£©£¬£¨3£¬0£©£¬
¡ày=-$\frac{1}{2}$£¨x+1£©£¨x-3£©£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{1}{2}$x2+x+$\frac{3}{2}$£»

£¨2£©È¡OBµÄÖеãP£¨$\frac{3}{2}$£¬0£©£¬Á¬½ÓCP£¬
ÔòS¡÷PBC=$\frac{1}{2}$S¡÷BOC£¬
¹ýµãP×÷PQ¡ÎBC½»Å×ÎïÏßÓÚQ£¬¼´ÎªËùÇó£»
¡ßÅ×ÎïÏßÓëyÖá½»ÓÚµãC£¬
¡àµãCµÄ×ø±êΪ£º£¨0£¬$\frac{3}{2}$£©£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
$\left\{\begin{array}{l}{b=\frac{3}{2}}\\{3k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{1}{2}$x+$\frac{3}{2}$£¬
¡àÉèÖ±ÏßPQµÄ½âÎöʽΪy=-$\frac{1}{2}$x+n£¬
¡à-$\frac{1}{2}$¡Á$\frac{3}{2}$+n=0£¬
¡àn=$\frac{3}{4}$£¬
¡àÖ±ÏßPQµÄ½âÎöʽΪy=-$\frac{1}{2}$x+$\frac{3}{4}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{2}x+\frac{3}{4}}\\{y=-\frac{1}{2}{x}^{2}+x+\frac{3}{2}}\end{array}\right.$£¬
½âµÃ£ºx=$\frac{-3¡À\sqrt{3}}{2}$£¬
ÈôS¡÷BCQ¡Ý$\frac{1}{2}$S¡÷BOC
ÔòxQµÄÈ¡Öµ·¶Î§Îª£ºxQ¡Ý$\frac{-3+\sqrt{3}}{2}$»òxQ¡Ü$\frac{-3-\sqrt{3}}{2}$£»

£¨3£©Æ½ÒƺóµÄÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{1}{2}$x2£¬
¹ýµãE×÷EM¡ÍyÖáÓÚM£¬¹ýµãF×÷FN¡ÍyÖáÓÚN£¬
ÓÉ·´Éä¿ÉÖª£º¡ÏEPM=¡ÏFPN£¬
¡àRt¡÷EPM¡×Rt¡÷FPN£¬
¡à$\frac{KM}{FN}$=$\frac{PM}{PN}$£¬
ÉèE£¨x1£¬y1£©¡¢F£¨x2£¬y2£©£¬ÉèÖ±ÏßEFµÄ½âÎöʽΪy=kx+b£¬
¡à$\frac{-{x}_{1}}{-{x}_{2}}$=$\frac{{y}_{1}+1}{-1-{y}_{2}}$£¬
¡àx1£¨1+y2£©+x2£¨y1+1£©=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+b}\\{y=-\frac{1}{2}{x}^{2}}\end{array}\right.$£¬
ÕûÀíµÃx2+2kx+2b=0£¬
¡àx1+x2=-2k£¬x1x2=2b£¬
¡ßx1£¨1+y2£©+x2£¨y1+1£©=x1£¨1+kx2+b£©+x2£¨kx1+b+1£©=0£¬
¡à2bx1x2+£¨b+1£©£¨x1+x2£©=0£¬
¡à2kb-2k=0£¬b=1£¬
¡àÖ±ÏßEFµÄ½âÎöʽΪy=kx+1
¡àÖ±ÏßEFµÄ¹ý¶¨µã£¨0£¬1£©£®

µãÆÀ ´ËÌâÊôÓÚ¶þ´Îº¯ÊýµÄ×ÛºÏÌ⣮¿¼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽÒÔ¼°º¯ÊýµÄ½»µãÎÊÌ⣮עÒâ׼ȷ×÷³ö¸¨ÖúÏßÊǽâ´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬ÈôÒªµÃµ½AD¡ÎEF£¬ÐèÒªÌí¼ÓµÄÌõ¼þÊÇ£¨Ö»ÌîÒ»¸öÌõ¼þ£©¡Ï2=¡Ï3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬ÒÑÖª°ëÔ²OµÄÖ±¾¶ABΪ8£¬PΪOBµÄÖе㣬CΪ°ëÔ²ÉÏÒ»µã£¬Á¬½áCP£¬Èô½«CPÑØÉäÏßAB·½ÏòƽÒÆÖÁDE£¬ÈôDEÇ¡ºÃÓë¡ÑOÏàÇÐÓÚµãD£¬ÔòƽÒƵľàÀëΪ$\sqrt{33}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Í¼ÖУ¬¡Ï1ºÍ¡Ï2ÊǶԶ¥½ÇµÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®$\sqrt{5}$½éÓÚÏÂÁÐÄÄÁ½¸öÕûÊýÖ®¼ä£¨¡¡¡¡£©
A£®0Óë1B£®1Óë2C£®2Óë3D£®3Óë4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ1£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=ax2+bx+c£¨a£¾0£©µÄͼÏóµÄ¶¥µãΪDµã£¬ÓëyÖá½»ÓÚCµã£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬AµãÔÚÔ­µãµÄ×ó²à£¬BµãµÄ×ø±êΪ£¨3£¬0£©£¬OB=OC£¬tan¡ÏACO=$\frac{1}{3}$£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽ£®
£¨2£©¾­¹ýC¡¢DÁ½µãµÄÖ±Ïߣ¬ÓëxÖá½»ÓÚµãE£¬ÔÚ¸ÃÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãF£¬Ê¹ÒÔµãA¡¢C¡¢E¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬ÈôµãG£¨2£¬y£©ÊǸÃÅ×ÎïÏßÉÏÒ»µã£¬µãPÊÇÖ±ÏßAGÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¬µ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷APGµÄÃæ»ý×î´ó£¿Çó³ö´ËʱPµãµÄ×ø±êºÍ¡÷APGµÄ×î´óÃæ»ý£®
 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®°ÑÏÂÁи÷Êý·Ö±ðÌîÔÚ±íʾËüËùÔڵļ¯ºÏÀ-5£¬-$\frac{3}{4}$£¬0£¬-£¨-3.14£©£¬-2.4£¬$\frac{22}{7}$£¬2003£¬-1.99£¬-£¨-6£©£¬-|-12|
£¨1£©Õý·ÖÊý¼¯ºÏ£º{-£¨-3.14£©£¬$\frac{22}{7}$¡¡ ¡­}£»
£¨2£©·Ç¸ºÊý¼¯ºÏ£º{0£¬-£¨-3.14£©£¬$\frac{22}{7}$£¬2003£¬-£¨-6£©¡¡ ¡­}£»
£¨3£©ÕûÊý¼¯ºÏ£º{-5£¬0£¬2003£¬-£¨-6£©£¬-|-12| ¡­}£»
£¨4£©·Ç¸ºÕûÊý¼¯ºÏ£º{0£¬2003£¬-£¨-6£© ¡­}£»
£¨5£©ÓÐÀíÊý¼¯ºÏ£º{-5£¬-$\frac{3}{4}$£¬0£¬-£¨-3.14£©£¬-2.4£¬$\frac{22}{7}$£¬2003£¬-1.99£¬-£¨-6£©£¬-|-12| ¡­}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½âÏÂÁз½³Ì×é
£¨1£©$\left\{\begin{array}{l}2x-y=5\\ x-1=\frac{1}{2}£¨{2y-1}£©\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}3x+2y=1\\ 2x-3y=5\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚËıßÐÎABCDÖУ¬¡ÏBAC=90¡ã£¬AB¡ÎCD£¬ÇëÄãÌíÉÏÒ»¸öÌõ¼þ£ºAB=CD£¬Ê¹µÃËıßÐÎABCDÊǾØÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸