精英家教网 > 初中数学 > 题目详情
古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2,a4-a3,…,由此推算,a100-a99=
 
,a100=
 
分析:两数相减等于前面数的下标,如:an-an-1=n.
利用(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=an-a1,求a100
解答:解:
a2-a1=3-1=2;
a3-a2=6-3=3;
a4-a3=10-6=4;
…;
an-an-1=n.
所以a100-a99=100.
∵(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1
=2+3+4+…+n
=
n(n+1)
2
-1=an-a1
∴a100=
100×101
2
=5050.
点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2,a4-a3,…,由此推算,an-an-1的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性.若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2,a4-a3,…,由此推算,可知a100=
5050
5050

查看答案和解析>>

科目:初中数学 来源: 题型:

古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角数形记为a2,…,第n个三角形数记为an,计算a2-a1,a3-a2…由此推算a100-a99=
100
100

查看答案和解析>>

科目:初中数学 来源: 题型:

古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性.若把第22,23,24个三角形数分别作为圆台的上底、下底的半径和母线的长,则此圆台的侧面积为
158700π
158700π

查看答案和解析>>

科目:初中数学 来源: 题型:

古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差是多少?

查看答案和解析>>

同步练习册答案