精英家教网 > 初中数学 > 题目详情
在□ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图(1))。
(1)在图(1)中画图探究:
①当P1为射线CD上任意一点(P不与C点重合)时,连接EP1,将线段EP,绕点E逆时针旋转90°得到线段EC1,判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2,判断直线G1G2与直线CD的位置关系, 画出图形并直接写出你的结论;
(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=x,=y,求y与x之间的函数关系式,并写出自变量x的取值范围。
解:(l)①直线FG1与直线CD的位置关系为互相垂直,证明:如图(1),
设直线FG1与直线CD的交点为H,
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC,
∵∠G1EF=90°-∠P1EF
∠P1EC=90°-∠P1EF,
∴∠G1EF=∠P1EC,
∴△G1EF≌△P1EC,
∴∠G1FE=∠P1CE,
∵EC⊥CD,
∴∠ P1CE=90°,
∴∠G1FE=90°,
∴∠EFH=90°,
∴∠FHC=90°,
∴FG1⊥CD,
②按题目要求所画图形见图(1),直线G1G2与直线CD的位置关系为互相垂直。
(2)∵四边形ABCD是平行四边形,
∴∠B=∠ADC,
∵AD=6,AE=1,tanB=
∴DE=5,tan∠EDC=tanB=
可得CE=4,
由(1)可得四边形FECH为正方形,
①如图(2)当P1点在线段CH的延长线上时,
∵FG1=CP1=x,P1H=x-4,
=×FG1×P1H=
∴y=x2-2x(x>4),
②如图(3),当P,点在线段CH上(不与C、H 两点重合)时,
∴FG1=CP1=x,P1H=4-x,
=×FG1×P1H=
∴y=-x2+2x(0 <x<4),
③当P1点与H点重合时,即x=4时,△P1FG1不存在,
综上所述,y与x之间的函数关系式及自变量x的取值范围是y=x2-2x(x >4)或y=-x2+2x(0<x<4)。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在?ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E按逆时针方向旋转90°得到线段EF.如图所示.
(1)在图中画图探究:
①当p1为线段CD延长线上任意一点时,连接.EP1,将线段EP1绕点E按逆时针方向旋转90°得到线段EG1判断直线FG1与直线CD的位置关系,并说明理由;(在图1中画)
②当P2为线段DC的延长线上任意一点时,连接EP2,将线EP2绕点E按逆时针方向旋转90°得到线段EG2.判断直线FG2与直线CD的位置关系,画出图形并直接写出你的结论.(在图2中画)
(2)在①的条件下,连接FP1、P1G1,若EP1=8,AD=6,AE=1,AB:CE=3:4,求△P1G1F的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在□ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF,点P为直线CD上一点(不与点C重合).
(1)在图1中画图探究:
当点P在CD延长线上时,连结EP并把EP绕点E逆时针旋转90°得到线段EQ.作直线QF交直线CD于H,求证:QF⊥CD.
(2)探究:结合(1)中的画图步骤,分析线段QH、PH与CE之间是否存在一种特定的数量关系?请在下面的空格中写出你的结论;若存在,直接填写这个关系式.
①当点P在CD延长线上且位于H点右边时,
QH-PH=2CE
QH-PH=2CE

②当点P在边CD上时,
QH+PH=2CE
QH+PH=2CE

(3)若AD=2AB=6,AE=1,连接DF,过P、F两点作⊙M,使⊙M同时与直线CD、DF相切,求⊙M的半径是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

在?ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图①).
(1)在图①中画图探究:
①当P1为射线CD上任意一点(P1不与C点重合)时,连接EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.
(1)试说明:△ABF∽△EAD;
(2)若AB=8,BE=6,AD=7,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,过点B的直线与对角线AC,边AD分别交于点E和点F,过点E作EG∥BC,交AB于G,则图中相似的三角形有
3
3
对.

查看答案和解析>>

同步练习册答案